本专栏包含大量的首发原创改进方式🚀, 所有文章都是全网首发内容。🌟
降低改进难度,改进点包含最新最全的Backbone
部分、Neck
部分、Head
部分、注意力机制
部分、自注意力机制
部分等完整教程 🚀
💡本篇文章基于 YOLOv5、YOLOv7、YOLOv7-Tiny、YOLOv8
进行 RepLKDeXt 超大卷积核架构 改进。
重点:🔥🔥🔥涨点神器!!!有几个同学已经反应 该教程 提供的网络结构配置
在自有数据集上有效涨点!!!
文章目录
一、网络模型部分
二、RepLKNet 论文理论部分 + YOLOv5、YOLOv8代码改进
当你在卷积网络(CNN)的深度、宽度、groups、输入分辨率上调参调得不可开交的时候,是否会在不经意间想起,有一个设计维度,kernel size,一直如此显而易见却又总是被忽视,总是被默认设为3x3或5x5?
CNN中的kernel size是一个非常重要但总是被人忽略的设计维度,在现代模型设计的加持下,卷积核越大越暴力,既涨点又