芒果YOLOv5改进39:主干Backbone篇之RepLKNet:首发结合 RepLKNet 构建 最新 RepLKDeXt 结构|CVPR2022 超大卷积核, 越大越暴力,大到31x31, 涨点

本文介绍如何将RepLKDeXt超大卷积核架构应用于YOLOv5和YOLOv7模型,通过对比展示在减小参数量和计算量的同时实现性能提升。详细步骤包括创建replkdext.py模块,配置yaml文件,并给出代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本专栏包含大量的首发原创改进方式🚀, 所有文章都是全网首发内容。🌟

降低改进难度,改进点包含最新最全的Backbone部分、Neck部分、Head部分、注意力机制部分、自注意力机制部分等完整教程 🚀

💡本篇文章基于 YOLOv5、YOLOv7、YOLOv7-Tiny、YOLOv8 进行 RepLKDeXt 超大卷积核架构 改进。
重点:🔥🔥🔥涨点神器!!!有几个同学已经反应 该教程 提供的网络结构配置 在自有数据集上有效涨点!!!

一、网络模型部分

在这里插入图片描述

二、RepLKNet 论文理论部分 + YOLOv5、YOLOv8代码改进

当你在卷积网络(CNN)的深度、宽度、groups、输入分辨率上调参调得不可开交的时候,是否会在不经意间想起,有一个设计维度,kernel size,一直如此显而易见却又总是被忽视,总是被默认设为3x3或5x5?

CNN中的kernel size是一个非常重要但总是被人忽略的设计维度,在现代模型设计的加持下,卷积核越大越暴力,既涨点又

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值