YOLOv5、YOLOv8改进结构系列:结合最新ICLR2022顶会的即插即用的动态卷积ODConv,全维度动态卷积有效提升精度,打造高性能检测

本文介绍了如何在YOLOv5和YOLOv8中应用动态卷积ODConv,通过全维度动态卷积提高目标检测的准确性。相比于传统卷积,ODConv在保持高效推理的同时,通过输入依赖的注意力权重增强了特征学习,带来显著的性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 💡该教程为改进进阶指南,属于《芒果书》📚系列,包含大量的原创首发改进方式, 所有文章都是全网首发原创改进内容🚀
    降低改进难度,改进点包含最新最全的Backbone部分、Neck部分、Head部分、注意力机制部分、自注意力机制部分等完整教程🌟
  • 💡本篇文章为 基于 YOLOv7、YOLOv7-Tiny 、YOLOv5、YOLOv6、YOLOX、YOLOv8 结合即插即用的动态卷积ODConv 改进🌟
  • 代码已更新,直接YOLO系列+ODConv运行即可
  • 专栏读者有问题可以私信博主,看到了就会回复.

网络结构图

在这里插入图片描述


Conv && ODConv 使用参数对比

GFLOPs降低
Param微涨,可以说是差不多


Conv

Model Summary: 270 laye
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值