一般的模型构建都是按照下图这样的流程
下面分享一个自己手动搭建的网络
from model import *
import torchvision
import torch
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torch import nn
from torch.utils.data import DataLoader
#数据增强
data_transforms = transforms.Compose([
transforms.RandomRotation(45),
transforms.ToTensor(),
])
#准备数据集
#train_data = torchvision.datasets.CIFAR10(root="D:\pythonProject_pytorchstudy", train=True, transform=torchvision.transforms.ToTensor(), download=False)
#test_data = torchvision.datasets.CIFAR10(root="D:\pythonProject_pytorchstudy", train=False, transform=torchvision.transforms.ToTensor(), download=False)
train_data = torchvision.datasets.CIFAR10(root="D:\pythonProject_pytorchstudy", train=True, transform=data_transforms, download=False)
test_data = torchvision.datasets.CIFAR10(root="D:\pythonProject_pytorchstudy", train=False, transform=torchvision.transforms.ToTensor(), download=False)
#数据集长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练集的长度为:{}".format(train_data_size))
print("测试集的长度为:{}".format(test_data_size))
#利用Dataloader加载数据集
train_dataloader =DataLoader(train_data,batch_size=64)
test_dataloader =DataLoader(test_data,batch_size=64)
#搭建神经网络
#model.py
#创建网络模型
Yolo = My_Model()
################################
if torch.cuda.is_available(): #
Yolo = My_Model().cuda() #
################################
#损失函数
loss_fn = nn.CrossEntropyLoss()
################################
if torch.cuda.is_available(): #
loss_fn = loss_fn.cuda() #
################################
#优化器
learning_rate = 0.01 #1e-2 = 1 x (10)^(-2) =1/100 =0.01
optimizer = torch.optim.SGD(Yolo.parameters(), lr = learning_rate, )
#设置训练网络的参数
total_train_step = 0
#记录测试次数
total_test_step = 0
#训练轮数
epoch = 10
#添加tensorboard
writer = SummaryWriter("D:\pythonProject_pytorchstudy\cifar-10-batches-py\logs_train")
for i in range(epoch):
print("第{}轮训练开始".format(i+1))
#训练步骤开始
Yolo.train()
for data in train_dataloader:
imgs,targets = data
################################
if torch.cuda.is_available(): #
imgs = imgs.cuda() #
targets = targets.cuda() #
################################
outputs = Yolo(imgs)
loss = loss_fn(outputs,targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 30 ==0:
print("Iteration:{},loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss", loss.item(),total_train_step)
#测试步骤开始
Yolo.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad(): #让网络中的梯度没有
for data in test_dataloader:
imgs, targets = data
################################
if torch.cuda.is_available(): #
imgs = imgs.cuda() #
targets = targets.cuda() #
################################
outputs = Yolo(imgs)
loss = loss_fn(outputs,targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_train_step += 1
torch.save(Yolo,"YOLO_{}".format(i+1))
#torch.save(Yolo.state_dict(),"Yolo_{}.pth".format(i+1))
print("模型已保存")
writer.close()
import torch
from torch import nn
class My_Model(nn.Module):
def __init__(self):
super(My_Model, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
# Yolo = My_Model()
# input = torch.ones(64,3,32,32)
# output = Yolo(input)
# print(output.shape)