改进YOLOv5 | 在 C3 模块中添加【SE】【CBAM】【 ECA 】【CA】注意力机制 | 附详细结构图

本文介绍了如何在YOLOv5的C3模块中集成SE、CBAM、CA和ECA四种注意力机制,详细阐述了各模块的原理和代码实现,提供了结构图,并指导了添加方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



1. SE 注意力模块

论文名称:《Squeeze-and-Excitation Networks》

论文地址:https://arxiv.org/pdf/1709.01507.pdf

代码地址: https://github.com/hujie-frank/SENet

1.1 原理

SEnet (Squeeze-and-Excitation Network)考虑了特征通道之间的关系,在特征通道上加入了注意力机制。

SEnet通过学习的方式自动获取每个特征通道的重要程度,并且利用得到的重要程度来提升特征并抑制对当前任务不重要的特征。SEnet 通过Squeeze模块和Exciation模块实现所述功能。

在这里插入图片描述

如图所示,首先作者通过squeeze操作,对空间

### ECA注意力机制结构图 ECA(Efficient Channel Attention)注意力机制是一种轻量级的通道注意力机制,其主要特点是通过一维卷积操作来捕获通道间的依赖关系[^1]。ECA模块的设计灵感来源于SENet(Squeeze-and-Excitation Network),但相比SENet,ECA在计算效率上有所提升,同时保持了良好的性能。 以下是ECA注意力机制的核心架构描述: 1. **全局平均池化**:首先对输入特征图进行全局平均池化操作,将空间维度压缩为1×1,从而得到每个通道的全局信息[^2]。 2. **一维卷积**:接着使用一维卷积代替传统的全连接层,用于建模通道间的长距离依赖关系。一维卷积的核大小是根据输入特征图的通道数动态计算得出的[^3]。 3. **Sigmoid激活函数**:最后通过Sigmoid激活函数生成通道注意力权重,这些权重被用来重新加权输入特征图中的各个通道[^4]。 以下是ECA模块的一个典型实现代码示例: ```python import torch import torch.nn as nn class ECAAttention(nn.Module): def __init__(self, channels, gamma=2, b=1): super(ECAAttention, self).__init__() t = int(abs((math.log(channels, 2) + b) / gamma)) k_size = t if t % 2 else t + 1 self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): y = self.avg_pool(x) # 全局平均池化 y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) # 一维卷积 y = self.sigmoid(y) # Sigmoid激活 return x * y.expand_as(x) # 权重重新加权 ``` 关于ECA注意力机制结构图,通常可以通过以下方式获取或绘制: - 在学术论文中查找原始的架构图,例如ECA-Net的论文[^5]。 - 使用工具如TensorBoard、PyTorch Profiler等可视化神经网络结构。 - 利用绘图软件手动绘制ECA模块的主要流程,包括全局平均池化、一维卷积和Sigmoid激活函数。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值