更换 RT-DETR 主干网络为 【ResNet-18】【ResNet-34】| 已支持 18/34/50/101/152 全系列尺寸

博主介绍了如何在RT-DETR中使用ResNet-18和ResNet-34作为主干网络,详细阐述了网络结构的添加步骤和参数量对比,旨在优化目标检测模型的性能。同时强调了更深的残差网络在视觉识别任务中的重要性,并在COCO目标检测数据集上取得了提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本专栏内容均为博主独家全网首发,未经授权,任何形式的复制、转载、洗稿或传播行为均属违法侵权行为,一经发现将采取法律手段维护合法权益。我们对所有未经授权传播行为保留追究责任的权利。请尊重原创,支持创作者的努力,共同维护网络知识产权。


之前这篇文章写过了添加【ResNet-50】【ResNet-101】【ResNet-152】,我们这篇写添加 【ResNet-18】【ResNet-34】,需要在原来的基础上添加一个新的模块。

<
模型 参数量
resnet-18 29905484
resnet-34 40013644
resnet-50 42925132
resnet-101 61917260
resnet-152 77560908
rtdetr-l 32970476
<think>好的,我现在需要帮助用户找到关于RT-DETR模型使用ResNet18(R18)作为主干网络的实现方法和使用信息。首先,我应该回忆一下RT-DETR的基本结构以及它通常使用的主干网络RT-DETR是实时检测变换器(Real-Time Detection Transformer)的缩写,结合了Transformer架构和实时目标检测的需求。通常,RT-DETR可能会使用不同的主干网络,比如ResNet或者更轻量级的网络来平衡速度和精度。 用户提到的ResNet18是一个比较轻量级的卷积神经网络,适合在资源受限的环境下使用。因此,使用R18作为主干网络可能旨在降低计算复杂度,提高推理速度,同时保持一定的检测精度。接下来,我需要考虑如何在RT-DETR中替换或使用R18主干。 首先,我需要查找是否有公开的代码库或论文中提到了RT-DETRResNet18的结合。例如,DETR的原始实现使用ResNet作为主干,而RT-DETR可能在其基础上进行了优化。参考用户提供的引用内容,他们提到了YOLOv10的修改,比如添加模块文件和修改模型解析函数,这可能对理解如何修改RT-DETR的结构有帮助。 根据引用[2],修改模型解析函数(parse_model)可能需要调整输入通道和层结构。如果要将R18集成到RT-DETR中,可能需要调整主干网络的输出特征图,以匹配Transformer部分的输入要求。此外,引用[3]中提到的空间通道解耦下采样模块(SCDown)可能对优化下采样过程有帮助,但不确定是否适用于RT-DETR。 接下来,实现步骤可能包括:1)加载ResNet18作为主干,并移除其全连接层;2)提取不同阶段的特征图作为Transformer的输入;3)调整Transformer的编码器和解码器结构以适应特征图的尺寸;4)进行端到端的训练,可能需要修改损失函数和训练策略以适应实时检测的需求。 在代码实现方面,可以参考PyTorch中的ResNet18实现,并将其集成到RT-DETR的框架中。例如,使用torchvision.models.resnet18,获取中间层的输出,然后将这些特征传递给Transformer编码器。同时,需要注意特征图的通道数和空间分辨率,确保与后续模块兼容。 训练时,可能需要调整数据增强、学习率调度等参数,特别是因为ResNet18的参数较少,可能需要不同的训练策略来防止欠拟合。此外,实时性要求可能影响批次大小和设备选择,如引用[1]中使用CPU训练,但实际部署可能需要GPU加速。 用户可能还关心如何评估RT-DETR-R18模型的性能,比如在COCO数据集上的mAP和推理速度。比较与其他主干网络(如ResNet50或MobileNet)的权衡,分析速度和精度的平衡。 最后,需要确保回答结构清晰,分步骤说明实现方法,并引用提供的参考资料。可能还需要生成相关问题,如优化方法、性能比较或应用场景,以帮助用户进一步探索。</think>### RT-DETR模型使用ResNet18主干的实现方法 #### 1. **主干网络替换** RT-DETR(Real-Time Detection Transformer)的默认主干网络可能基于更复杂的架构(如ResNet50或Swin Transformer),但替换为ResNet18可通过以下步骤实现: - **加载ResNet18**:使用预训练的ResNet18作为特征提取器,移除其全连接层,保留卷积层输出多尺度特征图[^2]。 - **调整特征输出**:ResNet18的Stage2-Stage5输出特征图(如C3-C5)需与RT-DETR的Transformer输入对齐,通常通过1x1卷积调整通道数。 #### 2. **模型架构修改** 参考YOLOv10的解耦设计思想[^3],可优化RT-DETR的流程: - **特征融合**:将ResNet18输出的多尺度特征图输入Transformer编码器,通过自注意力机制增强全局上下文建模。 - **解码器适配**:Transformer解码器需根据ResNet18的特征分辨率调整查询(Query)生成策略,例如减少查询数量以提升实时性。 #### 3. **代码实现示例(PyTorch框架)** ```python import torch import torchvision from rt_detr import RTDETRTransformer # 加载ResNet18主干 backbone = torchvision.models.resnet18(pretrained=True) backbone = torch.nn.Sequential(*list(backbone.children())[:-2]) # 移除最后两层(avgpool和fc) # 定义RT-DETR模型 class RTDETR_R18(torch.nn.Module): def __init__(self, num_classes=80): super().__init__() self.backbone = backbone self.transformer = RTDETRTransformer( d_model=256, # 与ResNet18输出通道对齐 num_queries=100, num_classes=num_classes ) def forward(self, x): features = self.backbone(x) # 输出特征图尺寸例如:[batch, 512, 16, 16] return self.transformer(features) ``` #### 4. **训练与优化** - **数据配置**:类似YOLO系列,需配置数据集路径和类别数(参考引用[1]的`data=cfg/datasets/coco128.yaml`格式)。 - **训练参数**:若使用CPU训练,设置`device=cpu`并减小`batch`值(如`batch=8`)以避免内存溢出[^1]。 - **损失函数**:采用匈牙利匹配损失,包含分类损失和边界框回归损失。 #### 5. **性能与应用场景** - **实时性优势**:ResNet18的计算量显著低于复杂主干,适合边缘设备部署。 - **精度权衡**:相比ResNet50,检测精度可能下降,可通过知识蒸馏或量化训练补偿[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值