所有的增强内容来自 Albumentations
库,
文档地址:https://albumentations.ai/docs/
一、前言
在目标检测、图像分割、图像分类等任务中,数据增强(Data Augmentation) 已经成为提升模型鲁棒性、避免过拟合的一个重要手段。对于目标检测任务中常见的 YOLO 格式标签而言,如何在图像增强的同时保证 标签的坐标同步变换,成为一个需要重点关注的问题。
本文将介绍一个基于 Albumentations 库来进行 图像增强 的脚本。这个脚本不仅支持 单进程/并行 两种方式来处理大量图像,还可以通过命令行灵活配置各项参数与数据路径。
为什么选择 Albumentations?
Albumentations