基于固态激光雷达Livox的建图与定位系统!提供Docker自测!

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

99edf70004d5e8b21edeb03cc17dd3c5.png

作者丨黄思渊

来源丨 计算机视觉life

今天介绍一个最新的SLAM开源算法,作者开源了一套完整易用的、基于固态激光雷达Livox的SLAM系统。为了方便各位感兴趣读者的尝试,作者还提供了相应的Docker镜像文件和测试数据集。

3c4d0eccf7c99e1978ed773bd0d5316d.gif

开源链接如下:欢迎star,fork,watch

Livox-Mapping: 

https://github.com/PJLab-ADG/Livox-Mapping

Livox-Localization: 

https://github.com/SiyuanHuang95/Livox-Localization

Docker: 

https://hub.docker.com/r/siyuanhuang95/livox_slam

在自主移动机器人的任务执行过程中,实时获得自身当前位姿是要解决的基本问题之一。目前,以激光雷达为主传感器进行点云地图构建,并用scan-map匹配的方式定位是当前的主流方案。但是传统的多线激光雷达成本高,体积大,装配复杂,不适合在一些小型、成本敏感的移动机器人上使用。而固态激光雷达以其成本低、集成度高、方便装配的优势,近年来在机器人领域引起了广泛关注。但固态激光雷达视场小,扫描模式不规则的特点,也为SLAM算法的适配带来了新的困难。

本工作给出了一套完整易用的、使用固态激光雷达进行地图构建的系统。该系统的前端部分是基于开源的里程计框架LIO-Livox开发的,后端则加入了基于ScanContext的位姿图优化。此外,我们添加了更多约束以提高建图性能。同时我们在Livox-Localization中为您提供了一个简单的基于激光雷达地图的定位模块,可以测试点云建图的效果。为了方便各位感兴趣读者的尝试,我们提供了相应的Docker镜像文件和测试数据集。

下面分别介绍我们在LIO-Livox基础上添加的部分新特性。

  • 回环检测

在回环检测部分,我们使用Scan Context点云描述子进行回环检测,并将回环约束加入到求解器中进行优化。通过回环,我们可以减小在大场景下里程计位姿估计的累计误差。下面给出开启与关闭回环的效果对比。

开启闭环检测

520676428a42dddaa851336d07e7c2a1.gif

关闭闭环检测

ee55c5a5b8d620b0df0dfb28b821f6d2.gif

  • 地面约束

在激光雷达建图算法中,经常会出现z轴漂移的问题。而固态激光雷达由于FoV小,这个问题会更加明显。为了应对这个问题,我们受hdl_graph_slam的启发,将地面约束加入了优化求解器中。下面给出加入地面约束后与加入之前的效果对比。

加入地面约束

f5041cbe2a96ce34ccbf62291198e179.gif

不加地面约束

4f9c568d5bb0290175650944c80a34d9.gif

  • 多包建图

在实际的建图过程中,我们经常会多次采集环境的信息并存储在rosbag包中。所以我们需要一个将多rosbag包建立的地图进行合并的功能。在本文中,我们使用GPS(可选)的信息将不同rosbag包中的数据转到统一的坐标系下。与此同时,我们在后端维护一个长期优化的关键帧序列,并利用Scan Context及icp的方法实现来自不同包关键帧之间的相不加地面互回环、联合优化以保证地图的全局一致性。下面是多包建图的结果。

acba415d149c0fd4294d5420091206b8.gif

  • GPS因子

我们还提供了GPS因子来帮助建图过程。在本系统中,是否使用GPS信息是可选的,即使没有 GPS 信息,整个系统也可以正常工作。

  • 与地图编辑器interactive_slam相互兼容

Interactive_slam是一个基于3D激光雷达的开源点云地图编辑框架。我们输出的结果与interactive_slam兼容。这样就可以方便地使用 interactive_slam对建图结果进行手工修整以获得更准确的LiDAR地图。同时,我们还提供了一项使用图像数据,借助 mmdection 和简单的 LiDAR 点投影的动态物体去除功能。

b877bbeb6024310dc9e900568bdbc695.png

本文仅做学术分享,如有侵权,请联系删文。

3D视觉精品课程推荐:

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

d29059cc9ee82ac1deb194793a6f0ad5.png

▲长按加微信群或投稿

f28800c6534e8f31880081ec63dd1af3.png

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列三维点云系列结构光系列手眼标定相机标定激光/视觉SLAM自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

9d5ad0c8c0f867881bd445a149428889.png

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

### LIO-SAM 深度相机的归一化处理及集成方式 #### 1. 深度相机数据的归一化处理 在将深度相机的数据 LIO-SAM 集成时,深度信息需要进行归一化以适应算法的需求。通常,深度相机提供的是像素级的深度值,而 LIO-SAM 需要的是三维点云形式的数据。因此,归一化过程包括以下步骤: - **深度到点云的转换**:通过相机内参矩阵将深度中的每个像素映射为三维空间中的点[^2]。 - **坐标系对齐**:确保深度相机的坐标系激光雷达和 IMU 的坐标系一致。这通常需要进行外参标定,以获得深度相机相对于其他传感器的姿态变换矩阵[^3]。 #### 2. 深度相机 LIO-SAM 的集成方式 LIO-SAM 可以通过融合深度相机提供的稠密深度信息来增强其定位性能。以下是集成的主要方式: - **直接点云融合**:将深度相机生成的点云激光雷达点云合并后输入到 LIO-SAM 中。这种方法要求深度相机的采样频率激光雷达相近,否则可能导致时间同步问题[^3]。 - **特征级融合**:提取深度相机像中的几何特征(如边缘、平面)并激光雷达的特征进行匹配,从而提高地的精度和鲁棒性[^2]。 #### 3. 参数调整 为了使 LIO-SAM 更好地适配深度相机,需要调整以下关键参数: - **深度相机的误差模型**:根据深度相机的规格设置深度误差和角度误差。例如,对于某些深度相机,可以参考类似 Livox Avia LiDAR 和 OS1-16 的配置,分别调整深度误差为 0.02 米和角度误差为 0.05 度[^2]。 - **时间下采样比例**:如果深度相机的帧率较高,可以通过时间下采样减少数据量,避免计算资源过载。例如,LIO-SAM 默认对激光雷达点云进行 1:3 的时间下采样[^2]。 - **体素地参数**:调整体素地的根体素大小和八叉树的最大层数,以平衡地的分辨率和存储效率。例如,根体素大小可设置为 0.5 米,最大层数为 3[^2]。 #### 4. 硬件适配 硬件适配是实现深度相机 LIO-SAM 集成的关键步骤。以下是一些常见的适配方法: - **多传感器同步**:确保深度相机、激光雷达和 IMU 的数据能够精确同步。这通常需要使用硬件触发器或软件时间戳对齐技术[^3]。 - **计算平台选择**:由于深度相机数据处理需要较高的计算能力,议使用高性能计算平台(如 Intel i7-10700K CPU 和 32 GB RAM)。如果需要降低功耗和成本,也可以考虑基于 ARM 的嵌入式平台(如 RB5®),但可能需要优化算法以适应较低的计算资源。 #### 代码示例:深度到点云的转换 以下是将深度转换为点云的代码示例: ```cpp // 将深度转换为点云 void depthToPointCloud(const cv::Mat &depth, const Eigen::Matrix3d &intrinsics, pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud) { cloud->clear(); for (int v = 0; v < depth.rows; ++v) { for (int u = 0; u < depth.cols; ++u) { float d = depth.at<float>(v, u); if (d > 0) { pcl::PointXYZ point; point.x = (u - intrinsics(0, 2)) * d / intrinsics(0, 0); point.y = (v - intrinsics(1, 2)) * d / intrinsics(1, 1); point.z = d; cloud->push_back(point); } } } } ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值