论文题目:Learning the Distribution of Errors in Stereo Matching for Joint Disparity and Uncertainty Estimation
作者:Liyan Chen ;Weihan Wang; Philippos Mordohai;
作者机构:Stevens Institute of Technology(斯蒂文斯理工学院)
论文链接:https://arxiv.org/pdf/SEDNet.pdf
项目代码:https://github.com/lly00412/SEDNet(论文中提到的开源代码,用的是Pytorch框架)
在公众号「3D视觉工坊」后台回复「原论文」,可获取对应论文pdf文件。
本文提出了一种新的深度立体匹配中用于联合视差和不确定性估计的损失函数。在神经网络中加入KL散度项,要求不确定性分布匹配视差误差分布,以实现精确的不确定性估计。使用可微的软直方图技术来近似分布,并在损失函数中使用。该方法在大型数据集上获得了显着的改进。作为cvpr2023最新的文章,非常值得阅