CVPR2023 | 一种不需要点聚类的新颖点云实例分割算法

本文提出了一种名为ISBNet的新颖点云实例分割算法,该算法无需依赖传统的聚类方法。通过实例感知最远点采样和框感知动态卷积,ISBNet解决了现有方法在处理对象密集和大型对象时的局限性,提高了实例分割的精度和召回率。实验表明,ISBNet在ScanNetV2、S3DIS和STPLS3D数据集上实现了最先进的性能,同时保持了高效的推理时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:PCIPG-HAY | 来源:3D视觉工坊

在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf和代码链接

添加微信:dddvisiona,备注:3D点云,拉你入群。文末附行业细分群

36d840807fbba78f74d4fa1ac18dd3f8.png

现有的 3D 实例分割方法以自下而上的设计为主——手动微调算法将点分组为簇,然后是细化网络。然而,由于依赖于聚类的质量,当(1)具有相同语义类的附近对象被打包在一起,或(2)具有松散连接区域的大型对象时,这些方法会产生容易受到影响的结果。为了解决这些限制,我们引入了 ISBNet,这是一种新颖的cluster-free方法,它将实例表示为内核并通过动态卷积解码实例掩码。为了有效地生成高召回率和判别力的内核,我们提出了一种名为“实例感知最远点采样”的简单策略来对候选进行采样,并利用受 PointNet++ 启发的本地聚合层对候选特征进行编码。此外,我们还表明,在动态卷积中预测和利用 3D 轴对齐边界框可以进一步提高性能。我们的方法在 ScanNetV2 (55.9)、S3DIS (60.8) 和 STPLS3D (49.2) 上的 AP 上设置了新的最先进结果,并保留了快速推理时间(Sca

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值