- 博客(5784)
- 收藏
- 关注
转载 ICRA-2025 | 低成本、高隐私具身导航!Open-Nav:探索开源LLMs零样本视觉语言导航能力
使用SPICE、BLEU、METEOR和ROUGE等文本评估指标,比较了Llama3.1-70B、Qwen2-72B、Gemma2-27B和Phi3-14B四种开源LLM在指令理解上的能力。方法,探索使用开源大型语言模型(LLMs)进行零样本视觉-语言导航(VLN-CE),解决了依赖昂贵的闭源LLMs(如GPT-4)带来的成本和隐私问题。:要求智能体根据文本指令在3D环境中导航。环境中验证性能,通过广泛的实验表明,Open-Nav在性能上与使用闭源LLMs的方法相当,同时具有低成本和保护隐私的优势。
2025-08-20 07:02:23
15
转载 RSS‘25开源 | 破解机器人柔性物体抓取的难题!
研究方向为机器人操作、机器人感知、物理模拟,在RSS,CoRL,ICCV,ICLR等会议上发表多篇论文,并曾获得ICRA Workshop最佳论文奖。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,欢迎文末联系我们。RSS'25|3D世界模型怎样应用于机器人对柔性物体的操作?,为大家着重分享他们团队的工作。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。:3D视觉工坊很荣幸邀请到了哥伦比亚大学博士生。3D视觉工坊很荣幸邀请到了哥伦比亚大学博士生。3D世界模型在机器人操作中的应用。
2025-08-19 07:03:36
19
转载 大模型入侵智驾:蔚来靠仿真闭环,理想押注 VLA,小鹏死磕蒸馏 —— 谁能跑赢?
比起大语言模型,自动驾驶基座模型的研发更复杂、更有挑战”,刘博士表示自动驾驶模型的训练数据远不止单模态的文本数据,还包括摄像头信息、导航信息等关于物理世界的多模态数据。diffusion优点,不仅生成自车轨迹,也生成他车轨迹,提升交互博弈能力,可以根据外部条件输入,改变结果,用户直接与模型对话,开慢点,赶时间,开快点diffusion,慢,效率低:基于常微分的ode采样,大幅加速diffsusion生成过程,2-3步内就可以生成稳定的轨迹RLHF微调:提升专项数据的使用,摆脱模仿学习的上限。
2025-08-19 07:03:36
185
转载 CVPR 2025 Highlight | UltraFusion:基于扩散生成模型的超高动态范围成像
本硕毕业于浙江大学,目前为香港中文大学MMLab博一新生,师从薛天帆教授。CVPR'25 Highlight & Best Demo Honorable Mention | UltraFusion: 由9档曝光差异的输入生成HDR场景。,为大家着重分享他们团队的工作。:3D视觉工坊很荣幸邀请到了香港中文大学MMLab博一新生。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,3D视觉工坊很荣幸邀请到了香港中文大学MMLab博一新生。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。
2025-08-18 07:04:27
22
转载 顶刊TII新作 | 完美实现动态环境中的长期定位!加速200倍,定位精度+70%!
基于实时子图剪裁的核心思想在于:在多阶段图优化SLAM中,由于传感器不断观测最新的环境特征,新鲜子图不断生成,如果不断地剪裁旧的子图,就可以使得地图始终保持最新的状态。方法流程:该方法首先通过实时分析子图质心特征,初步筛选出重叠率高的冗余子图,并结合观测增益模型评估子图的有效性,从而剔除那些长期存在的无效子图。这种方法有效防止了冗余信息在系统中的累积,确保了移动机器人长期定位的准确性。2)通过提取子地图质心特征来确定子地图与实时采集方法的重叠率,从而过滤掉高度重叠的子地图,显著提升了全局地图更新的实时性。
2025-08-18 07:04:27
51
转载 聊一聊小白如何入门六轴机械臂?
南方科技大学本硕博,具备多年机械臂系统实物开发经验,从事机械臂相关创业多年,擅长机械臂建模与参数辨识、逆运动学与动力学算法设计、传统机械臂控制、以及机械臂实物平台的结构设计与软硬件集成。从零开始,系统构建机械臂的全流程认知,通过理论与实践相结合的方式,让学员不仅掌握机械臂的核心原理,更能亲手搭建并控制属于自己的机械臂系统,实现从理论到实践的跨越。课程以「边讲边做」讲解机械臂核心知识,将复杂的运动学与控制理论拆解为可实践的代码模块,以可运行实战支撑每个概念,助力学员从零构建可控机械臂系统。
2025-08-17 00:02:46
119
转载 JD-400!iToF 3D相机!测距0.2~3m!可用于避障、具身智能感知、栈板识别等!
JD-400是一款苏州三迪斯维推出的基于 3D iTOF(indirect Time-of-Flight)技术方案的工业相机产品,即传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射的相位差,再转换成时间差,来换算被拍摄景物的距离,以产生深度信息。产品的技术方案可提供高精度(毫米级)的深度图和三维点云图,集成 RGB(选配)的JD-400相机,可以输出像素对齐的 RGBD 图像;如下表中参数为产品的供电需求,请参考如下参数进行配置相应的供电配件,如超出如下范围值,产品可能被损坏。
2025-08-17 00:02:46
62
转载 ICCV‘25开源 | 港中文新作OmniDepth:统一单目和双目深度估计!完虐DepthAnythingV2!
关键在于潜在对齐阶段采用交叉注意力Transformer,迭代对齐单目与立体表示:首先通过上下文特征引导假设聚合,随后利用聚合的几何约束更新单目表示,实现双向优化。单目和立体深度估计提供了互补的优势:单目方法捕获丰富的上下文先验,但缺乏几何精度,而立体方法利用透视几何,但在处理反射或无纹理表面等歧义时却感到困难。我们的方法通过隐式表示对齐,在单目几何推理和立体像素匹配之间架起桥梁,相较于单目模型(DepthAnythingV2),实现了卓越的深度准确性和更精细的细节。我们与领先的基准NMRF进行了比较。
2025-08-17 00:02:46
52
转载 ICCV‘25开源 | 港中文新作OmniDepth:统一单目和双目深度估计!完虐DepthAnythingV2!
关键在于潜在对齐阶段采用交叉注意力Transformer,迭代对齐单目与立体表示:首先通过上下文特征引导假设聚合,随后利用聚合的几何约束更新单目表示,实现双向优化。单目和立体深度估计提供了互补的优势:单目方法捕获丰富的上下文先验,但缺乏几何精度,而立体方法利用透视几何,但在处理反射或无纹理表面等歧义时却感到困难。我们的方法通过隐式表示对齐,在单目几何推理和立体像素匹配之间架起桥梁,相较于单目模型(DepthAnythingV2),实现了卓越的深度准确性和更精细的细节。我们与领先的基准NMRF进行了比较。
2025-08-17 00:02:46
16
转载 ICCV‘25开源 | 港中文新作OmniDepth:统一单目和双目深度估计!完虐DepthAnythingV2!
关键在于潜在对齐阶段采用交叉注意力Transformer,迭代对齐单目与立体表示:首先通过上下文特征引导假设聚合,随后利用聚合的几何约束更新单目表示,实现双向优化。单目和立体深度估计提供了互补的优势:单目方法捕获丰富的上下文先验,但缺乏几何精度,而立体方法利用透视几何,但在处理反射或无纹理表面等歧义时却感到困难。我们的方法通过隐式表示对齐,在单目几何推理和立体像素匹配之间架起桥梁,相较于单目模型(DepthAnythingV2),实现了卓越的深度准确性和更精细的细节。我们与领先的基准NMRF进行了比较。
2025-08-17 00:02:46
20
转载 ICCV‘25开源 | 港中文新作OmniDepth:统一单目和双目深度估计!完虐DepthAnythingV2!
关键在于潜在对齐阶段采用交叉注意力Transformer,迭代对齐单目与立体表示:首先通过上下文特征引导假设聚合,随后利用聚合的几何约束更新单目表示,实现双向优化。单目和立体深度估计提供了互补的优势:单目方法捕获丰富的上下文先验,但缺乏几何精度,而立体方法利用透视几何,但在处理反射或无纹理表面等歧义时却感到困难。我们的方法通过隐式表示对齐,在单目几何推理和立体像素匹配之间架起桥梁,相较于单目模型(DepthAnythingV2),实现了卓越的深度准确性和更精细的细节。我们与领先的基准NMRF进行了比较。
2025-08-17 00:02:46
4
转载 三维高斯泼溅应用最新综述:分割、编辑与生成
此外,我们还分析了编辑领域的其他方向研究,例如物体删除,视频编辑,以及重绘等任务。我们首先总结了在3DGS的分割,编辑,生成任务中常用的数据集及其特点,可供研究者便捷的参考,其中,图3展示了 13 个常用的分割、编辑和生成数据集的示例。在本综述中,我们从方法设计、监督范式与学习策略三个维度对代表性方法进行归类与比较,进一步总结主流评测数据集与性能指标,并指出当前面临的核心挑战与未来的发展方向,期望为新入门者和资深研究者提供一份系统、可读性强的参考资料,推动3DGS在高层三维理解任务中的广泛应用与深入研究。
2025-08-16 00:01:22
43
转载 ICCV 2025 Oral | 告别「僵尸」3D数字人!清华、南洋理工等联手打造DPoser-X
DPoser-X作为一个即插即用的先验模块,可以在许多地方派上用场,为了方便大家的使用,作者在GitHub进行了非常详细的开源,每个下游任务的测试和训练代码都进行了整理,model_zoo全部开放到Huggingface上,欢迎大家使用与stars!DPoser-X在处理这类问题时,尤其是在有遮挡、侧脸等复杂情况下,表现出了惊人的鲁棒性。任务中,当身体的某些部分(如左腿)被遮挡时,DPoser-X能够生成多种合理的、符合逻辑的完整姿态,而其他方法往往难以做到,这体现了其强大的“想象”和泛化能力。
2025-08-16 00:01:22
81
转载 卡尔曼滤波重塑多目标跟踪?SG-LKF:纯视觉第一!任何速度都稳定!
在本文中,我们研究了自我车辆速度在MOT中的关键作用,并提出了一种速度引导的可学习卡尔曼滤波器(SG-LKF),该滤波器能够根据自我车辆速度动态调整不确定性建模,显著提高了高度动态场景中的稳定性和准确性。广泛的实验表明,SG-LKF在KITTI 2D MOT上的HOTA排名第一,达到79.59%,在KITTI 3D MOT上取得了82.03%的HOTA,并且在nuScenes 3D MOT上的AMOTA性能超过了SimpleTrack的2.2%。小时时,它会产生对齐错误的框并遗漏被遮挡的车辆。
2025-08-15 07:01:47
49
转载 一文看尽世界机器人大会,不用去现场人挤人了
这边,带来了整个机器人柔性凸焊系统,上位机器人GP12利用3D视觉定位后,在传送带上抓取工件,然后利用2D视觉二次定位,进行上料过程,由另一台GP7完成螺母上料,最后交由凸焊机焊接。不过这次它不跑马拉松了,转行搞起了分拣工作,双臂最大负载可达16kg,观众还可以亲身参与互动,拿取5个工件放置传送带,怎么摆都可以,天工都能轻松分门别类放好。身高130cm、体重35kg的G1机器人,直接给观众们上演一场精彩纷呈的拳击赛,躲闪、格挡、侧踢,拳拳到肉,充分展现了机器人的抗冲击能力和软硬件协调性。
2025-08-15 07:01:47
41
转载 FAST-Calib:激光雷达与相机快速外参标定
然后采用四个检测到的标记的平均位姿作为标定板的估计位姿,从而确定板坐标系的位置和方向。如图4所示(a)和(b)显示了用外部颜色着色的点云分别通过我们的方法和Velo2Cam估计的参数,所有用于联合校准的数据对。给定在相机坐标系中提取的点集PC和在激光雷达坐标系中提取的点集PL(均为圆孔中心),目标是找到一个刚性变换TCL,以最小化对应点之间的距离。5. 边缘膨胀问题:对于具有大光斑尺寸的激光雷达(例如,Livox激光雷达),标定板的边缘经常出现膨胀,导致激光雷达和相机数据之间的特征对应不准确。
2025-08-14 07:02:30
59
转载 突破40年Dijkstra算法瓶颈,清华教授等颠覆教科书!斩获STOC最佳论文
因此,如果想设计一个解决最短路径问题的最快算法,合理的做法是先找到最近的点,然后是次近的点,依此类推。迪杰斯特拉的算法会利用之前已探索的区域,决定下一步通过扫描这个区域的「边界」——也就是所有与边界相连的节点。B点距离1单位,C点距离5单位。他拉来三位研究生帮忙细化细节,几个月后,他们取得了部分成功——开发出了一种算法,打破了任意权重下的排序瓶颈,但仅适用于所谓无向图。从起点开始,逐步探索网络中到每个点的最短路径——这种方法很有效,因为知道到附近节点的最短路径,能帮助你找到到更远节点的最短路径。
2025-08-13 07:01:16
78
转载 精迅V1-V4!从零搭建一套结构光三维扫描仪[硬件+源码+课程]
我们推出了「精迅」系列设备,是一台面向科研级的高速、高精度、源码级开发的3d面结构光测量设备,能够自由DIY配置,并且与机械臂等结合,开发相应的应用。算法经过高度优化,适配高分辨率相机。:采用DLP4710光机,分辨率更高,支持彩色条纹写入,最高亮度1000LM,无惧户外和黑色场景,适合大范围场景重建。:采用DLP3010光机,界面经过高度优化,一键重建、点云滤波、显示,适合手在眼上的视觉引导、测量场景。点云处理:可以手动设置滤波参数,自动化处理点云,并且可以与点云进行交互、裁切、表面重建算法,
2025-08-12 16:34:51
67
转载 ICCV‘25开源 | 浙大沈春华团队提出POMATO:动态3D重建新范式!点云匹配+时序运动,三维追踪精度提升!
POMATO 是一个结合点云匹配与时序运动建模的统一动态三维重建框架,通过在统一坐标系中将多视角 RGB 像素映射到三维点云并引入时序运动模块,提升了帧间尺度一致性与动态场景下的匹配精度。此外,我们还引入了一个面向动态运动的时间运动模块,以确保不同帧之间的尺度一致性,并提升对几何精度和匹配可靠性要求较高任务(尤其是三维点追踪)的表现。其次,我们设计了一个时序运动模块,用于促进运动特征在时间维度上的交互,从而在需要同时进行精确几何估计和匹配的任务中(尤其是视频序列输入下的三维点追踪)显著提升性能。
2025-08-12 07:03:59
61
转载 ICCV‘25开源 | 浙大沈春华团队提出POMATO:动态3D重建新范式!点云匹配+时序运动,三维追踪精度提升!
POMATO 是一个结合点云匹配与时序运动建模的统一动态三维重建框架,通过在统一坐标系中将多视角 RGB 像素映射到三维点云并引入时序运动模块,提升了帧间尺度一致性与动态场景下的匹配精度。此外,我们还引入了一个面向动态运动的时间运动模块,以确保不同帧之间的尺度一致性,并提升对几何精度和匹配可靠性要求较高任务(尤其是三维点追踪)的表现。其次,我们设计了一个时序运动模块,用于促进运动特征在时间维度上的交互,从而在需要同时进行精确几何估计和匹配的任务中(尤其是视频序列输入下的三维点追踪)显著提升性能。
2025-08-12 07:03:59
55
转载 ICCV‘25开源 | 浙大沈春华团队提出POMATO:动态3D重建新范式!点云匹配+时序运动,三维追踪精度提升!
POMATO 是一个结合点云匹配与时序运动建模的统一动态三维重建框架,通过在统一坐标系中将多视角 RGB 像素映射到三维点云并引入时序运动模块,提升了帧间尺度一致性与动态场景下的匹配精度。此外,我们还引入了一个面向动态运动的时间运动模块,以确保不同帧之间的尺度一致性,并提升对几何精度和匹配可靠性要求较高任务(尤其是三维点追踪)的表现。其次,我们设计了一个时序运动模块,用于促进运动特征在时间维度上的交互,从而在需要同时进行精确几何估计和匹配的任务中(尤其是视频序列输入下的三维点追踪)显著提升性能。
2025-08-12 07:03:59
21
转载 ICCV‘25开源 | 浙大沈春华团队提出POMATO:动态3D重建新范式!点云匹配+时序运动,三维追踪精度提升!
POMATO 是一个结合点云匹配与时序运动建模的统一动态三维重建框架,通过在统一坐标系中将多视角 RGB 像素映射到三维点云并引入时序运动模块,提升了帧间尺度一致性与动态场景下的匹配精度。此外,我们还引入了一个面向动态运动的时间运动模块,以确保不同帧之间的尺度一致性,并提升对几何精度和匹配可靠性要求较高任务(尤其是三维点追踪)的表现。其次,我们设计了一个时序运动模块,用于促进运动特征在时间维度上的交互,从而在需要同时进行精确几何估计和匹配的任务中(尤其是视频序列输入下的三维点追踪)显著提升性能。
2025-08-12 07:03:59
70
转载 ICCV‘25开源 | 浙大沈春华团队提出POMATO:动态3D重建新范式!点云匹配+时序运动,三维追踪精度提升!
POMATO 是一个结合点云匹配与时序运动建模的统一动态三维重建框架,通过在统一坐标系中将多视角 RGB 像素映射到三维点云并引入时序运动模块,提升了帧间尺度一致性与动态场景下的匹配精度。此外,我们还引入了一个面向动态运动的时间运动模块,以确保不同帧之间的尺度一致性,并提升对几何精度和匹配可靠性要求较高任务(尤其是三维点追踪)的表现。其次,我们设计了一个时序运动模块,用于促进运动特征在时间维度上的交互,从而在需要同时进行精确几何估计和匹配的任务中(尤其是视频序列输入下的三维点追踪)显著提升性能。
2025-08-12 07:03:59
58
转载 ICCV‘25开源 | 浙大沈春华团队提出POMATO:动态3D重建新范式!点云匹配+时序运动,三维追踪精度提升!
POMATO 是一个结合点云匹配与时序运动建模的统一动态三维重建框架,通过在统一坐标系中将多视角 RGB 像素映射到三维点云并引入时序运动模块,提升了帧间尺度一致性与动态场景下的匹配精度。此外,我们还引入了一个面向动态运动的时间运动模块,以确保不同帧之间的尺度一致性,并提升对几何精度和匹配可靠性要求较高任务(尤其是三维点追踪)的表现。其次,我们设计了一个时序运动模块,用于促进运动特征在时间维度上的交互,从而在需要同时进行精确几何估计和匹配的任务中(尤其是视频序列输入下的三维点追踪)显著提升性能。
2025-08-12 07:03:59
18
转载 ICCV‘25开源 | 浙大沈春华团队提出POMATO:动态3D重建新范式!点云匹配+时序运动,三维追踪精度提升!
POMATO 是一个结合点云匹配与时序运动建模的统一动态三维重建框架,通过在统一坐标系中将多视角 RGB 像素映射到三维点云并引入时序运动模块,提升了帧间尺度一致性与动态场景下的匹配精度。此外,我们还引入了一个面向动态运动的时间运动模块,以确保不同帧之间的尺度一致性,并提升对几何精度和匹配可靠性要求较高任务(尤其是三维点追踪)的表现。其次,我们设计了一个时序运动模块,用于促进运动特征在时间维度上的交互,从而在需要同时进行精确几何估计和匹配的任务中(尤其是视频序列输入下的三维点追踪)显著提升性能。
2025-08-12 07:03:59
17
转载 CVPR‘25 Highlight | SLAM3R:北大陈宝权团队等只用单目长视频就能实时重建高质量的三维稠密点云
北京大学智能学院准博士生,师从陈宝权教授。研究方向为三维视觉,包括三维场景的理解与重建。CVPR'25 Highlight | SLAM3R:北大陈宝权团队等只用单目长视频就能实时重建高质量的三维稠密点云。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,欢迎文末联系我们。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,:3D视觉工坊很荣幸邀请到了北京大学智能学院准博士生。3D视觉工坊很荣幸邀请到了北京大学智能学院准博士生。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。
2025-08-11 07:10:21
18
转载 CVPR‘25 Highlight | SLAM3R:北大陈宝权团队等只用单目长视频就能实时重建高质量的三维稠密点云
北京大学智能学院准博士生,师从陈宝权教授。研究方向为三维视觉,包括三维场景的理解与重建。CVPR'25 Highlight | SLAM3R:北大陈宝权团队等只用单目长视频就能实时重建高质量的三维稠密点云。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,欢迎文末联系我们。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,:3D视觉工坊很荣幸邀请到了北京大学智能学院准博士生。3D视觉工坊很荣幸邀请到了北京大学智能学院准博士生。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。
2025-08-11 07:10:21
27
转载 CVPR‘25 Highlight | SLAM3R:北大陈宝权团队等只用单目长视频就能实时重建高质量的三维稠密点云
北京大学智能学院准博士生,师从陈宝权教授。研究方向为三维视觉,包括三维场景的理解与重建。CVPR'25 Highlight | SLAM3R:北大陈宝权团队等只用单目长视频就能实时重建高质量的三维稠密点云。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,欢迎文末联系我们。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,:3D视觉工坊很荣幸邀请到了北京大学智能学院准博士生。3D视觉工坊很荣幸邀请到了北京大学智能学院准博士生。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。
2025-08-11 07:10:21
40
转载 CVPR‘25 Highlight | SLAM3R:北大陈宝权团队等只用单目长视频就能实时重建高质量的三维稠密点云
北京大学智能学院准博士生,师从陈宝权教授。研究方向为三维视觉,包括三维场景的理解与重建。CVPR'25 Highlight | SLAM3R:北大陈宝权团队等只用单目长视频就能实时重建高质量的三维稠密点云。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,欢迎文末联系我们。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,:3D视觉工坊很荣幸邀请到了北京大学智能学院准博士生。3D视觉工坊很荣幸邀请到了北京大学智能学院准博士生。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。
2025-08-11 07:10:21
6
转载 深度总结!3D高斯溅射技术综合汇报
本文作者郭复胜,中科院自动化所博士,本篇报告对前沿三维重建重建与渲染解决方案全景解读。作者:郭复胜,中科院自动化所博士|3D视觉工坊整理。
2025-08-10 00:02:24
112
转载 2025 WRC!Odin1!首款千元级空间记忆模组!留形科技赢麻了~
而留形科技自主研发的MindCloud智能空间数据平台,提供从数据采集到后处理的一体化工作流,支持实时预览、特征标注、批处理及高效三维渲染(3D Gaussian Splatting, 3DGS),可自动完成数据单体化与2D-3D分割,并借助自研 MindCloud Renderer快速生成高保真 3DGS 模型,满足桌面端与移动端多层次、规模化的空间数据管理需求。开发友好:提供完整SDK,可输出完整原始及处理后点云、图像及 IMU 数据,兼容ROS和开源生态,支持定制化开发。
2025-08-10 00:02:24
157
转载 RSS‘25 | CMU开源基于人类操作数据预训练的跨具身学习框架!
卡内基梅隆大学 Safe AI Lab 在读博士生,研究方向涵盖机器人学习、强化学习与多智能体系统,致力于构建可协作、可扩展且可靠的智能机器人系统。近期与 Google DeepMind 和 Bosch Center for AI 深度合作,专注于跨具身学习与模仿学习在机器人操作中的应用。,为大家着重分享他们团队的工作。:3D视觉工坊很荣幸邀请到了卡内基梅隆大学Safe AI Lab在读博士生。3D视觉工坊很荣幸邀请到了卡内基梅隆大学Safe AI Lab在读博士生。,为大家着重分享他们团队的工作。
2025-08-10 00:02:24
20
转载 RSS‘25 | CMU开源基于人类操作数据预训练的跨具身学习框架!
卡内基梅隆大学 Safe AI Lab 在读博士生,研究方向涵盖机器人学习、强化学习与多智能体系统,致力于构建可协作、可扩展且可靠的智能机器人系统。近期与 Google DeepMind 和 Bosch Center for AI 深度合作,专注于跨具身学习与模仿学习在机器人操作中的应用。,为大家着重分享他们团队的工作。:3D视觉工坊很荣幸邀请到了卡内基梅隆大学Safe AI Lab在读博士生。3D视觉工坊很荣幸邀请到了卡内基梅隆大学Safe AI Lab在读博士生。,为大家着重分享他们团队的工作。
2025-08-10 00:02:24
11
转载 新一代Robotaxi感知难题的“最优解”:高性能数字激光雷达CP
这种情况下不仅传统的角毫米波雷达或后向摄像头方案因感知信息有限,不足以应对,即便是探测距离较短的激光雷达,也难以检测出动态目标的运动速度和准确轨迹,影响Robotaxi系统算法进一步预决策,威胁运行安全。EM4与E1的组合解决方案,不仅能够满足当下严格的安全与运营需求,其强大的性能潜力也为应对未来的技术演进与市场变化预留了充足空间,助力Robotaxi运营商在激烈市场竞争中脱颖而出,推动自动驾驶出行服务的整体水平迈向崭新高度。此外,激光雷达窗口片上的水渍或污垢对感知性能的影响不容忽视。
2025-08-08 07:02:15
54
转载 ICCV‘25 | 武大开源TurboReg:超高速高精度点云配准方法,让SLAM配准快200多倍!
武汉大学准博士生,硕士毕业于武汉大学,师从李加元教授。ICCV'25 | 武大开源TurboReg:超高速高精度点云配准方法,让SLAM配准快200多倍!,为大家着重分享他们团队的工作。如果您有相关工作需要分享,欢迎文末联系我们。,为大家着重分享他们团队的工作。如果您有相关工作需要分享,TurboReg开箱即用,支持双接口,跨平台高效运行。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。如何做到200倍提速?:3D视觉工坊很荣幸邀请到了武汉大学。3D视觉工坊很荣幸邀请到了武汉大学。3D视觉工坊哔哩哔哩。
2025-08-08 07:02:15
137
转载 ICCV‘25 | 完虐4DGS!7DGS来了:统一空间-时间-角度高斯泼溅
实验表明,7DGS在PSNR方面的表现优于先前的方法,最高可达7.36 dB,同时在具有复杂视图依赖效应的具有挑战性的动态场景上实现了实时渲染(401 FPS)。尽管通过神经辐射场(Neural Radiance Fields, NeRF),以及最近通过三维高斯溅射(3D Gaussian Splatting, 3DGS),在静态场景重建与渲染方面取得了显著进展,但要实现具有视相关效应的动态场景的高质量实时渲染,仍面临巨大的计算和表示挑战。该操作在融入七维模型丰富表示能力的同时,保留了3DGS的计算效率。
2025-08-07 07:02:33
47
转载 ICCV‘25 | 完虐4DGS!7DGS来了:统一空间-时间-角度高斯泼溅
实验表明,7DGS在PSNR方面的表现优于先前的方法,最高可达7.36 dB,同时在具有复杂视图依赖效应的具有挑战性的动态场景上实现了实时渲染(401 FPS)。尽管通过神经辐射场(Neural Radiance Fields, NeRF),以及最近通过三维高斯溅射(3D Gaussian Splatting, 3DGS),在静态场景重建与渲染方面取得了显著进展,但要实现具有视相关效应的动态场景的高质量实时渲染,仍面临巨大的计算和表示挑战。该操作在融入七维模型丰富表示能力的同时,保留了3DGS的计算效率。
2025-08-07 07:02:33
40
转载 ICCV‘25 | 完虐4DGS!7DGS来了:统一空间-时间-角度高斯泼溅
实验表明,7DGS在PSNR方面的表现优于先前的方法,最高可达7.36 dB,同时在具有复杂视图依赖效应的具有挑战性的动态场景上实现了实时渲染(401 FPS)。尽管通过神经辐射场(Neural Radiance Fields, NeRF),以及最近通过三维高斯溅射(3D Gaussian Splatting, 3DGS),在静态场景重建与渲染方面取得了显著进展,但要实现具有视相关效应的动态场景的高质量实时渲染,仍面临巨大的计算和表示挑战。该操作在融入七维模型丰富表示能力的同时,保留了3DGS的计算效率。
2025-08-07 07:02:33
21
转载 ICCV‘25 | 完虐4DGS!7DGS来了:统一空间-时间-角度高斯泼溅
实验表明,7DGS在PSNR方面的表现优于先前的方法,最高可达7.36 dB,同时在具有复杂视图依赖效应的具有挑战性的动态场景上实现了实时渲染(401 FPS)。尽管通过神经辐射场(Neural Radiance Fields, NeRF),以及最近通过三维高斯溅射(3D Gaussian Splatting, 3DGS),在静态场景重建与渲染方面取得了显著进展,但要实现具有视相关效应的动态场景的高质量实时渲染,仍面临巨大的计算和表示挑战。该操作在融入七维模型丰富表示能力的同时,保留了3DGS的计算效率。
2025-08-07 07:02:33
26
转载 ICCV‘25 | 完虐4DGS!7DGS来了:统一空间-时间-角度高斯泼溅
实验表明,7DGS在PSNR方面的表现优于先前的方法,最高可达7.36 dB,同时在具有复杂视图依赖效应的具有挑战性的动态场景上实现了实时渲染(401 FPS)。尽管通过神经辐射场(Neural Radiance Fields, NeRF),以及最近通过三维高斯溅射(3D Gaussian Splatting, 3DGS),在静态场景重建与渲染方面取得了显著进展,但要实现具有视相关效应的动态场景的高质量实时渲染,仍面临巨大的计算和表示挑战。该操作在融入七维模型丰富表示能力的同时,保留了3DGS的计算效率。
2025-08-07 07:02:33
29
socket通信技术
2018-01-23
GBK.h QT中显示中文
2018-01-18
socket通信界面程序
2018-01-24
粒子滤波在图像领域的跟踪
2018-04-25
PCL1.8.0+VS2013+Win10 x64的配置教程
2018-05-08
如何在Linux下使用“linuxdeployqt”源码打包发布Qt程序
2022-07-18
ubuntu下基于Clion+QT编写的界面demo,适合入门
2022-07-11
OpenCV3.3.1安装包
2022-07-01
linux下TCP通讯助手
2022-06-30
本demo主要实现ubuntu下实现与PLC以及机械臂之间的TCP网络通讯,并将C++代码编译成可以供C函数直接调用的C库。
2022-06-22
Windows下TCP通讯实战demo及TCP助手
2022-06-03
Linux下的TCP通讯实战demo以及通讯助手下载
2022-06-03
UKF(无迹卡尔曼滤波)
2020-12-03
Visual Assistant 2015破解版安装包
2018-09-12
particle_filter_demo.zip
2020-12-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人