Conference on Neural Information Processing Systems (NeurIPS)

### 方法分类与总结 #### Panoptic-PhNet Panoptic-PhNet 是一种专注于 LiDAR 数据的全景分割方法,主要通过结合点云的空间特性和语义信息来实现高精度的目标检测和分割。该方法的核心思想在于利用分层特征聚合(Hierarchical Feature Aggregation),将局部细节与全局上下文相结合[^1]。此外,Panoptic-PhNet 提出了一个新的损失函数设计,旨在平衡前景对象和背景区域之间的权重差异,从而改善整体性能。 #### LidarMultiNet LidarMultiNet 针对多任务学习场景而开发,能够在单一网络中同时执行多种感知任务,如目标检测、语义分割以及实例分割等。它的技术创新体现在两个方面:一是采用了共享骨干网结构以减少冗余计算;二是引入了任务特定分支,允许各个子任务独立优化而不互相干扰[^2]。这种方法显著提高了资源利用率,并降低了推理延迟。 #### LiDAR-Camera 对齐方法 为了充分利用不同类型传感器的优点,LiDAR 和相机间的精确校准变得尤为重要。当前主流的技术路线可以分为两类:基于几何约束的方法和基于学习的方法。前者依靠已知物理规律(例如共面条件或平行线假设)来进行粗略估计后再精调;后者则借助深度神经网络自动挖掘两者间隐含的关系模式[^3]。无论哪种方式都力求达到亚毫米级定位精度以便后续融合操作更加可靠稳定。 #### 4D-Former 作为一款面向动态环境监测需求的产品,4D-Former 不仅继承了传统静态三维重建系统的优点还额外增加了时间维度考量因素使其具备更强的时间连续性表达能力。具体而言就是运用 Transformer 结构捕捉长期依赖关系并通过跨帧关联强化个体身份追踪效果[^4]。与此同时它也保留了一定程度上的灵活性支持异步采样率输入情况下的正常运作。 #### PolarStream PolarStream 主要致力于解决极坐标系下数据分布稀疏所带来的挑战。不同于其他直接作用于笛卡尔坐标的方案,PolarStream 先把原始测量值转换成更适合圆形扫描路径描述的形式然后再做进一步处理。这样的预处理步骤有助于缓解因角度偏差引起的信息丢失现象同时也促进了下游模块对于远近距离物体同等对待的态度形成[^5]。 ```python # Example Code Snippet Demonstrating Basic Idea Behind Some Of These Methods In Practice: def hierarchical_feature_aggregation(features_list): aggregated = [] for i in range(len(features_list)-1): fused = torch.cat((features_list[i], features_list[i+1]), dim=1) processed = conv_bn_relu(fused) # Apply convolution followed by batch normalization & ReLU activation. aggregated.append(processed) return sum(aggregated) class TaskSpecificBranch(nn.Module): def __init__(self, num_classes): super(TaskSpecificBranch,self).__init__() self.classifier = nn.Linear(1024,num_classes) def forward(self,x): out = F.relu(x.view(-1,1024)) out = self.classifier(out) return out def polar_to_cartesian(rho, phi): x = rho * np.cos(phi) y = rho * np.sin(phi) return (x,y) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yongqiang Cheng

梦想不是浮躁,而是沉淀和积累。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值