生成式AI辅助写作:大学生批判性思维发展的双刃剑剖析

一、引言

1.1 研究背景与时代需求

在信息技术飞速发展的当下,生成式 AI 已成为全球瞩目的前沿技术领域,深刻地渗透进社会生活的各个层面。从内容创作到智能客服,从艺术设计到科学研究,生成式 AI 展现出强大的赋能潜力,引发了各行业的变革与创新浪潮。在教育领域,生成式 AI 的应用同样掀起了波澜,为教学模式的创新、学习资源的拓展提供了新的可能性,尤其是在写作辅助方面,生成式 AI 正逐渐改变着学生的写作生态。

生成式 AI 以其强大的自然语言处理能力,能够依据给定的主题、要求或情境,快速生成高质量的文本内容。像 ChatGPT、文心一言等知名的生成式 AI 工具,在大学生群体中广受欢迎。学生们利用这些工具进行论文大纲的构思、文献综述的撰写、语句的润色优化等,极大地提高了写作效率。据北京师范大学教育技术学院 2024 年的研究数据显示,87.6% 的受访大学生曾使用 AI 工具辅助写作,其中用于文献综述的比例高达 62.3%。这一数据直观地反映出生成式 AI 在大学生写作过程中的高参与度,也表明其已成为大学生写作不可或缺的辅助手段。

与此同时,批判性思维作为大学生核心素养的重要组成部分,其重要性不言而喻。在信息爆炸的时代,海量的信息如潮水般涌来,真假难辨、良莠不齐。大学生作为知识的探索者和未来社会的建设者,需要具备批判性思维能力,才能在纷繁复杂的信息海洋中去伪存真、筛选出有价值的信息,形成独立的见解和判断。批判性思维涵盖对信息的分析、评估、推理和反思等多个维度,它不仅仅是简单的质疑,更是一种基于理性和逻辑的深度思考过程。具备批判性思维的大学生,在面对学术问题时,能够深入剖析问题的本质,不盲目跟从既有观点,通过严谨的论证和推理得出合理的结论;在参与社会讨论时,能够理性地看待不同的观点和立场,做出明智的决策。在大学教育中,无论是专业课程的学习、学术研究的开展,还是综合素质的培养,批判性思维都发挥着关键作用,是大学生实现学业成功和个人全面发展的基石。

然而,生成式 AI 辅助写作这一新兴现象在为大学生写作带来便利的同时,也引发了教育界对于其对大学生批判性思维发展影响的广泛关注与深入思考。一方面,生成式 AI 强大的内容生成能力和智能交互功能,为大学生批判性思维的培养提供了新的契机和资源;另一方面,过度依赖生成式 AI 也可能导致大学生自主思考能力的弱化、信息辨别能力的下降以及思维的程式化,对批判性思维的发展产生潜在的负面影响。在这样的背景下,深入探究生成式 AI 辅助写作对大学生批判性思维发展的影响,已成为教育领域亟待解决的重要课题,具有深刻的时代需求和现实意义。

1.2 研究目的与价值

本研究旨在全面、系统地剖析生成式 AI 辅助写作对大学生批判性思维发展的影响,深入挖掘其中的积极作用与潜在风险,为教育实践提供科学、有效的理论指导与实践参考。具体而言,研究目的包括以下几个方面:一是通过多维度的研究方法,揭示生成式 AI 辅助写作在大学生写作过程中的应用现状,包括使用频率、应用场景、学生的使用体验等;二是从认知心理学、教育心理学等多学科视角,深入分析生成式 AI 辅助写作对大学生批判性思维发展的促进与抑制机制,明确其在不同情境下对批判性思维各维度(如分析能力、评估能力、推理能力、反思能力等)的具体影响;三是基于实证研究结果,提出切实可行的教育策略和建议,以引导大学生合理、有效地使用生成式 AI 辅助写作工具,充分发挥其优势,规避潜在风险,实现生成式 AI 与大学生批判性思维培养的有机融合。

本研究具有重要的理论与实践价值。在理论层面,有助于丰富和完善教育技术学、教育心理学等学科领域关于人工智能教育应用的理论体系。当前,生成式 AI 在教育领域的应用研究尚处于起步阶段,尤其是其对学生高阶思维能力(如批判性思维)影响的研究相对匮乏。本研究通过深入探讨生成式 AI 辅助写作与大学生批判性思维发展之间的关系,能够为进一步理解人工智能与教育的融合提供实证依据,填补相关理论空白,同时也为教育心理学中关于认知发展和学习过程的理论提供新的视角和补充。

在实践层面,研究成果对教育教学实践具有重要的指导意义。对于教师而言,了解生成式 AI 辅助写作对大学生批判性思维的影响,能够帮助他们更好地调整教学策略和方法,引导学生正确使用生成式 AI 工具,在提高写作教学效率的同时,注重培养学生的批判性思维和自主学习能力。教师可以根据学生的实际情况,设计有针对性的教学活动,如引导学生对生成式 AI 生成的内容进行批判性分析、组织学生开展基于生成式 AI 辅助的写作讨论等,从而提升学生的批判性思维水平。对于教育管理者来说,研究结果可为制定相关教育政策和技术应用规范提供参考,促进生成式 AI 在教育领域的健康、合理应用。通过建立科学的评价体系和监管机制,确保生成式 AI 工具的使用符合教育教学目标,避免学生过度依赖,保障教育教学质量。此外,对于学生自身的发展,本研究能够使学生认识到过度依赖人工智能工具的潜在风险,从而更加注重自身批判性思维的培养,提高学习质量和未来的竞争力。学生在使用生成式 AI 辅助写作的过程中,能够明确自身的主体地位,合理借助工具的力量,不断提升自己的思维能力和创新能力,为未来的职业发展和社会生活做好充分准备。

1.3 研究设计

为实现上述研究目标,本研究综合运用多种研究方法,确保研究的科学性、全面性和深入性。

文献研究法是本研究的重要基础。通过广泛查阅国内外相关文献,包括学术期刊论文、学位论文、研究报告、政策文件等,全面梳理生成式 AI 在教育领域尤其是写作辅助方面的研究现状,深入了解批判性思维的内涵、结构、测量方法以及其在大学生教育中的重要性和培养策略。对现有研究成果进行系统分析和总结,明确研究的前沿动态和空白点,为本研究的开展提供坚实的理论支撑和研究思路。

案例分析法用于深入剖析生成式 AI 辅助写作在实际教学中的应用案例。选取不同学科、不同层次的大学生作为研究对象,收集他们在使用生成式 AI 辅助写作过程中的典型案例,包括成功案例和存在问题的案例。通过对案例的详细分析,深入了解生成式 AI 辅助写作对大学生写作过程和批判性思维发展的具体影响,总结经验教训,为后续研究和实践提供实证依据。

访谈法用于获取大学生和教师的一手资料和真实看法。针对大学生,设计半结构化访谈提纲,围绕他们使用生成式 AI 辅助写作的动机、频率、方式、遇到的问题以及对自身批判性思维发展的影响等方面进行访谈,深入了解他们的使用体验和内心想法。对于教师,访谈内容则聚焦于他们对学生使用生成式 AI 辅助写作的态度、教学中如何引导学生合理使用、观察到的学生批判性思维变化以及对教学的启示等。通过访谈,获取丰富的质性数据,从不同角度深入理解生成式 AI 辅助写作与大学生批判性思维发展之间的关系。

本研究的框架如下:首先,在引言部分阐述研究背景、目的、价值和设计,明确研究的重要性和整体思路;接着,对生成式 AI 和批判性思维的相关理论进行深入阐述,为后续研究奠定理论基础;然后,通过实证研究详细分析生成式 AI 辅助写作对大学生批判性思维发展的促进与抑制效应;最后,基于研究结果提出针对性的教育策略和建议,为教育实践提供指导,并对研究进行总结与展望,指出未来的研究方向。

二、核心概念解析

2.1 生成式 AI 的内涵与特征

生成式 AI 作为人工智能领域的新兴分支,以其独特的内容生成能力成为近年来的研究热点与应用焦点。它是一种利用机器学习算法,特别是深度学习技术,使计算机能够模拟人类的创造性行为,生成全新的、具有实际意义的数据或内容的技术。其核心原理基于对大量数据的学习与分析,从中提取模式和规律,进而创造出与训练数据相似但又不完全相同的新内容。与传统的判别式 AI 主要聚焦于数据的分类、预测等任务不同,生成式 AI 将重点放在数据的生成与创造上,为各领域带来了全新的发展机遇与变革动力。

生成式 AI 具有诸多显著特征,这些特征共同塑造了其强大的功能与广泛的应用前景。自主性是生成式 AI 的关键特性之一。在数据驱动的学习过程中,它能够自动识别数据中的复杂模式和潜在关系,无需人类的详尽指导,便能依据所学知识自主生成内容。以语言模型为例,像 ChatGPT 在经过海量文本数据的训练后,能够在给定的对话情境或写作任务中,自主组织语言、构建逻辑结构,生成连贯且富有逻辑性的回复或文章,展现出高度的自主性 。

高效性也是生成式 AI 的突出优势。凭借强大的计算能力和优化的算法,它能够在极短的时间内完成大量内容的生成。在新闻报道领域,一些媒体机构利用生成式 AI,在事件发生后的几分钟内就能生成一篇简单的新闻稿件,快速向公众传递信息,大大提高了新闻生产的效率。这种高效性使得生成式 AI 在应对紧急任务或大规模内容需求时,具有不可比拟的优势。

创造性是生成式 AI 区别于传统 AI 的重要标志。它能够突破人类思维的常规局限,生成全新的、独特的内容。在艺术创作领域,生成式 AI 可以根据给定的主题、风格或情感基调,创作出富有创意的绘画、音乐作品。比如,AI 绘画工具能够根据用户输入的简单文字描述,生成精美的艺术画作,这些画作常常融合了多种元素和风格,展现出独特的艺术魅力,为艺术创作带来了新的思路和灵感。

多样性同样是生成式 AI 的显著特点。它能够生成多样化的数据,涵盖文本、图像、音频、视频等多种形式,满足不同领域、不同用户的多样化需求。在游戏开发中,生成式 AI 可以生成多样化的游戏角色、场景和剧情,为玩家带来丰富的游戏体验;在广告营销领域,它能根据不同的产品特点、目标受众和营销目标,生成风格各异的广告文案和创意素材,提升广告的吸引力和效果。

生成式 AI 的代表技术众多,其中 ChatGPT 无疑是最为知名的。它基于 Transformer 架构,通过在大规模语料库上的预训练,学习了丰富的语言知识和语义理解能力,能够与用户进行自然流畅的对话,回答各种复杂问题,还能完成文本生成、翻译、摘要等多种任务。OpenAI 研发的 GPT-4 更是在语言理解和生成能力上实现了新的突破,能够处理更加复杂的任务,生成更加准确、丰富和富有逻辑的内容,在学术写作、创意写作、智能客服等领域展现出强大的应用潜力 。除了语言模型,在图像生成领域,DALL-E 2 能够根据文本描述生成逼真的图像,为设计师、艺术家等提供了高效的创作工具;Midjourney 则以其强大的图像生成能力和独特的艺术风格,受到众多创作者的青睐,在广告设计、插画绘制、虚拟场景构建等方面发挥着重要作用。这些代表技术的不断涌现和发展,推动了生成式 AI 在各个领域的广泛应用,深刻改变了人们的工作和生活方式。

2.2 大学生批判性思维的构成与意义

批判性思维作为大学生必备的核心素养之一,是一种复杂的认知技能和思维模式,对大学生的学术发展、个人成长以及未来的职业发展都具有深远的意义。它并非简单的批评或否定,而是指个体在面对信息、观点和问题时,能够运用逻辑推理、证据评估和客观分析等方法,进行独立、深入、全面思考的能力。批判性思维要求大学生在思考过程中保持开放和质疑的态度,避免盲目接受和盲目排斥,通过理性的思考和分析,形成自己独立的见解和判断。

大学生批判性思维涵盖了多个关键的能力要素。分析能力是批判性思维的基础,它要求大学生能够将复杂的问题或信息分解成各个组成部分,深入理解其结构和内在关系。在阅读学术文献时,大学生需要运用分析能力,剖析文献的论点、论据和论证过程,理清作者的思路和逻辑框架,从而准确把握文献的核心内容和研究价值。

评估能力也是至关重要的。大学生需要能够对信息的准确性、可靠性、相关性以及观点的合理性、逻辑性进行客观的评价。在面对网络上纷繁复杂的信息时,具备评估能力的大学生能够判断信息的来源是否可靠,证据是否充分,观点是否存在偏见或漏洞,从而筛选出有价值的信息,避免受到虚假信息或误导性观点的影响。

推理能力是批判性思维的核心能力之一。大学生需要能够基于已知的信息和前提,运用归纳、演绎、类比等推理方法,得出合理的结论。在撰写学术论文时,通过对已有研究成果的分析和综合,运用合理的推理方法,推导出自己的研究假设和结论,使论文具有严谨的逻辑性和说服力。

反思能力同样不可或缺。它促使大学生对自己的思维过程、观点和行为进行反思和审视,发现其中的不足之处,并及时进行调整和改进。在完成一项学习任务或研究项目后,大学生通过反思总结经验教训,思考自己在思维方式、方法运用等方面存在的问题,从而不断提升自己的思维能力和学习能力。

批判性思维对大学生的学术发展具有重要意义。在大学的学习过程中,无论是专业课程的学习、学术研究的开展还是毕业论文的撰写,都需要批判性思维的支持。具备批判性思维的大学生能够主动质疑和探索知识,不满足于表面的理解,深入挖掘知识的内涵和本质。在课堂讨论中,他们能够提出有价值的问题和观点,与教师和同学进行深入的交流和探讨,促进知识的深化和拓展。在学术研究中,批判性思维帮助大学生识别研究问题的创新性和重要性,评估研究方法的合理性和有效性,分析研究结果的可靠性和局限性,从而推动学术研究的深入开展,提高研究质量和水平。

批判性思维对大学生的个人发展也具有深远影响。在信息爆炸的时代,批判性思维使大学生能够在海量的信息中保持清醒的头脑,辨别真伪,做出明智的决策。在面对各种社会现象和热点问题时,他们能够运用批判性思维进行理性分析,不盲目跟风,形成自己独立的见解和价值观。此外,批判性思维还有助于提高大学生的创新能力和解决问题的能力。通过批判性地思考问题,大学生能够打破思维定式,从不同的角度审视问题,寻找新的解决方案和创新思路,为未来的职业发展和社会生活做好充分准备。

三、生成式 AI 辅助写作对大学生批判性思维的积极作用

3.1 降低写作门槛,释放思维空间

在传统的写作模式中,大学生常常面临着诸多挑战,如构思的艰难、语言表达的障碍以及资料搜集的繁琐,这些挑战往往给学生带来沉重的认知负荷,使他们在写作过程中耗费大量的时间和精力,从而限制了批判性思维的充分发挥。而生成式 AI 的出现,为打破这一困境提供了新的可能。

北京师范大学教育技术学院 2024 年的研究数据显示,87.6% 的受访大学生曾使用 AI 工具辅助写作,其中用于文献综述的比例高达 62.3%。这一数据表明,生成式 AI 已成为大学生写作过程中的重要帮手。在写作的构思阶段,生成式 AI 的智能大纲生成功能发挥着关键作用。它能够根据学生输入的主题和关键词,快速生成一个逻辑清晰、结构完整的写作大纲。以撰写一篇关于 “人工智能在教育领域的应用” 的论文为例,生成式 AI 可以迅速梳理出包括人工智能在教学方法、学习效果评估、课程设计等方面的应用的大纲要点,为学生搭建起论文的基本框架,使学生能够在一个相对清晰的思路下展开后续的写作工作。这种智能大纲生成功能大大节省了学生自行构思大纲的时间和精力,让他们能够更快地进入到论文的实质性内容创作中。

在资料搜集环节,生成式 AI 同样表现出色。其语义分析技术能够精准匹配相关文献,快速筛选出与写作主题密切相关的资料。学生只需输入关键词或简短的描述,生成式 AI 就能在海量的学术资源中进行高效检索,并将最有价值的文献信息呈现给学生。这一功能极大地提高了资料搜集的效率,避免了学生在繁琐的文献检索中浪费大量时间,使他们能够将更多的精力投入到对资料的分析和整合中。

语言表达是写作过程中的又一难点,而生成式 AI 的自然语言处理模型为学生提供了多样化的表述方案。当学生在表达某个观点或描述某个现象时,生成式 AI 可以根据语境和语义,给出多种不同的表达方式,帮助学生选择最恰当、最准确的语言来传达自己的思想。例如,当学生想要描述 “科技对社会发展的影响” 时,生成式 AI 可以提供诸如 “科技深刻地变革了社会发展的轨迹”“科技为社会发展注入了强大的动力”“科技在社会发展进程中扮演着举足轻重的角色” 等多种表述,丰富学生的语言表达,提升写作的质量。

从认知心理学的角度来看,当工作记忆负荷减轻时,大脑更易进行高阶思维活动。生成式 AI 承担了写作过程中的基础性工作,如大纲构思、资料搜集和语言初步组织等,使学生能够将更多的认知资源投入到批判性分析中。清华大学某研究团队进行的一项对比实验发现,使用 AI 辅助组的学生在议论文写作中,论点深度比传统写作组平均提升 23%。这一结果有力地证明了生成式 AI 在降低写作认知负荷、促进学生批判性思维发展方面的积极作用。在 AI 辅助写作的过程中,学生不再需要为基本的写作任务而绞尽脑汁,能够将更多的精力集中在对问题的深入思考、对观点的批判性审视以及对论证逻辑的严谨构建上,从而提升了论点的深度和论证的质量。正如麻省理工学院媒体实验室的实证研究所揭示的,适度的技术介入实际上创造了 “认知盈余”,为深度思考留出心理空间。生成式 AI 辅助写作正是通过这种方式,为大学生批判性思维的发展提供了更为广阔的空间,使他们能够在写作过程中进行更加深入、全面的思考,培养和提升自己的批判性思维能力。

3.2 提供多元视角,激发思维创新

在写作过程中,丰富的素材和多元的观点是激发学生创新思维的重要源泉。生成式 AI 凭借其强大的数据分析和处理能力,能够为学生提供海量的信息和多样化的观点,打破学生思维的局限,为他们的论文写作带来新的灵感和思路。

以历史研究论文的写作为例,当学生以 “工业革命对社会结构的影响” 为主题进行写作时,生成式 AI 可以迅速整合来自不同学科领域、不同研究角度的资料。它不仅能提供经济学领域关于工业革命对产业结构调整、经济增长模式转变的研究成果,还能从社会学角度展示工业革命如何引发社会阶层的变动、城市化进程的加速以及社会价值观的变迁;从历史学角度呈现工业革命在不同国家和地区的发展历程、特点和影响的差异。这些丰富的资料和多元的观点,使学生能够从多个维度深入了解工业革命对社会结构的影响,避免了单一视角带来的局限性。学生在综合分析这些信息的过程中,能够发现不同观点之间的关联和冲突,从而激发自己的思考,提出独特的见解。比如,有学生通过对生成式 AI 提供的资料进行分析,发现以往研究中较少关注的工业革命对家庭结构和性别角色的深层次影响,并以此为切入点,在论文中提出了新颖的观点和论证,为该领域的研究注入了新的活力。

在文学创作领域,生成式 AI 同样能够为学生提供独特的视角和创意启发。当学生进行创意写作时,生成式 AI 可以根据给定的主题、风格或情感基调,生成富有想象力的故事情节、人物设定和环境描写。例如,在创作一篇科幻小说时,生成式 AI 可能会提供一些新奇的科技概念、外星文明的设定以及独特的时空架构,这些创意元素能够激发学生的想象力,帮助他们突破传统思维的束缚,创造出别具一格的文学作品。学生可以在生成式 AI 提供的创意基础上,结合自己的思考和情感,对故事情节进行进一步的拓展和深化,赋予作品独特的个性和内涵。这种人机协作的创作方式,不仅提高了学生的写作效率,更重要的是激发了他们的创新思维,使他们能够在文学创作中展现出独特的创造力。

在学术论文写作中,生成式 AI 还可以帮助学生发现研究领域中的前沿问题和潜在的研究方向。它能够对大量的学术文献进行分析,挖掘出当前研究的热点和空白点,为学生的研究选题提供参考。当学生在某一学科领域进行研究时,生成式 AI 可以通过对相关文献的梳理和分析,发现一些尚未得到充分研究的问题或新出现的研究趋势,引导学生从新的角度进行思考和探索。这有助于学生在学术研究中开拓创新,提出具有创新性的研究假设和方法,推动学术研究的不断发展。生成式 AI 提供的多元视角和丰富素材,为大学生的论文写作和学术研究注入了新的活力,促进了他们创新思维的发展,使他们能够在知识的海洋中不断探索,发现新的知识和观点,提升自己的批判性思维和创新能力。

3.3 优化学习反馈,培养反思能力

在传统的写作教学中,教师由于时间和精力的限制,往往难以对学生的每一篇作文进行全面、细致的反馈。学生在收到教师的批改意见后,可能由于反馈不够具体、针对性不强,难以准确理解自己的写作问题所在,从而无法有效地进行改进。而生成式 AI 辅助写作系统能够根据学生输入的文本,快速生成详细、具体的反馈信息,为学生提供及时、全面的指导,促进学生对自己的写作过程和成果进行反思。

以德国洪堡大学开发的 “反刍式写作系统” 为例,该系统利用生成式 AI 技术,为学生的写作提供多维度的反馈。在内容方面,系统会分析学生文章的论点是否明确、论据是否充分、论证是否合理,指出文章中存在的逻辑漏洞和观点模糊之处,并给出具体的改进建议。当学生在论述 “环境保护的重要性” 时,如果论点表述不够清晰,系统会提示学生明确阐述环境保护对人类生存、生态平衡等方面的具体重要意义;如果论据不够充分,系统会建议学生补充相关的数据、案例或研究成果来支持论点。在语言表达方面,系统会检查文章的语法错误、词汇运用是否恰当、句式是否单一等问题,并提供修改建议。对于语法错误,系统会明确指出错误类型并给出正确的表达方式;对于词汇运用不当的问题,系统会提供更合适的词汇选择;对于句式单一的情况,系统会建议学生运用多样化的句式来增强文章的表现力。

这种详细的反馈信息能够帮助学生更清晰地认识到自己写作中的不足之处,从而有针对性地进行反思和改进。学生在收到生成式 AI 的反馈后,会对自己的写作思路、知识储备、语言运用等方面进行反思。他们会思考为什么自己的论点不够明确,是对问题的理解不够深入,还是在表达上存在问题;会反思自己的论据是否充分,是否需要进一步查阅资料来丰富论证;会审视自己的语言表达是否准确、流畅,是否需要加强语言学习来提升表达能力。通过这样的反思过程,学生能够不断调整自己的写作策略,改进写作方法,提高写作水平。

生成式 AI 还可以记录学生的写作过程和修改历史,让学生直观地看到自己的进步和不足。学生可以通过对比不同版本的作文,分析自己在写作过程中的思维变化和改进情况,总结经验教训,进一步提升反思能力。这种基于生成式 AI 的学习反馈和反思机制,为学生提供了一个不断自我完善的学习环境,使他们在写作过程中能够及时发现问题、解决问题,培养和提升批判性思维中的反思能力,从而实现写作能力和思维能力的共同发展。

四、生成式 AI 辅助写作对大学生批判性思维的消极影响

4.1 “智能依赖症” 导致思维退化

随着生成式 AI 在大学生写作中的广泛应用,“智能依赖症” 已成为不容忽视的问题,对大学生的思维发展产生了诸多负面影响。浙江大学 2025 年的一项跟踪调查显示,长期依赖 AI 写作工具的学生群体中,42% 出现了 “论证能力下降” 的症状 ,这一数据直观地揭示了过度依赖 AI 对学生思维能力的侵蚀。

“智能依赖症” 首先表现为论证深度的扁平化。学生在使用 AI 写作工具时,往往倾向于直接采用 AI 生成的现成结论,而放弃了自主推演的过程。在撰写关于 “人工智能对就业市场的影响” 的论文时,AI 可能会直接给出诸如 “人工智能将导致大量重复性工作岗位被替代” 这样的结论,学生若不假思索地接受并使用,而不深入探究人工智能在创造新岗位、推动产业升级等方面的潜在作用,以及不同行业、不同技能水平人群受到的差异化影响,就会使论文的论证流于表面,缺乏深度和说服力。这种对 AI 结论的盲目依赖,抑制了学生深入思考和分析问题的能力,使他们逐渐失去了自主探索知识、构建论证逻辑的动力和能力。

资料来源的模糊化也是 “智能依赖症” 的突出表现。部分学生在使用 AI 写作工具时,难以准确区分 AI 合成内容与学术文献的界限。AI 在生成内容时,会整合大量的信息,但这些信息的来源往往并不明确。学生在引用 AI 生成的内容时,可能无法确切知晓其原始出处,也难以对信息的可靠性进行评估。在撰写历史研究论文时,AI 可能会提供一些关于历史事件的描述和观点,但学生如果不进一步查阅权威的历史文献进行核实,就可能将不准确甚至错误的信息写入论文,影响论文的学术质量。这种对资料来源的不重视和模糊认知,不仅反映了学生信息素养的缺失,也不利于批判性思维中评估能力的培养。

思维路径的程式化是 “智能依赖症” 带来的更为严重的问题。AI 的算法偏好无形中塑造了学生固定的思考模式。AI 在生成内容时,遵循一定的算法和模式,长期接触和依赖 AI 写作工具,会使学生的思维逐渐被这种算法模式所束缚。在写作过程中,学生可能会不自觉地按照 AI 的逻辑框架和思维方式来组织内容,缺乏创新性和灵活性。比如,在论述问题时,总是采用相似的结构和论证方式,缺乏独特的见解和批判性的思考。这种程式化的思维路径限制了学生思维的拓展和创新,使他们在面对复杂多变的问题时,难以提出新颖的解决方案和观点,阻碍了批判性思维的发展。

从教育神经科学的角度来看,功能性核磁共振成像(fMRI)扫描表明,频繁使用 AI 写作的学生在进行独立思考时,前额叶皮层的激活程度明显降低。前额叶皮层是负责逻辑推理、问题解决和决策等高级认知功能的脑区,长期依赖 AI 写作工具,导致该脑区缺乏足够的刺激和锻炼,就像肌肉一样,长期闲置会导致功能退化。正如北京大学教育学院王教授所指出的:“当 AI 连‘批判的种子’都代为播种时,学生就失去了思维破茧的关键契机。” 过度依赖 AI 写作工具,使学生失去了在自主思考和写作过程中锻炼思维能力的机会,阻碍了他们批判性思维的发展和提升。

4.2 信息真实性与可靠性问题

尽管生成式 AI 具有强大的内容生成能力,但它所生成的内容并非完全可靠,存在信息错误或虚假的风险,这对大学生批判性思维中的辨别能力构成了严峻挑战。

2024 年 10 月,印第安纳州律师 Rafael Ramirez 在代表 HooserVac LLC 就其退休基金提起诉讼时,在三份单独的简报中引用了案件引文,而这些案件竟是 ChatGPT 捏造的。Ramirez 承认使用了生成式人工智能,但却未意识到这些案例并不真实。这一事件充分暴露出生成式 AI 在信息真实性方面存在的严重问题。在学术写作领域,这样的问题同样不容忽视。学生在使用生成式 AI 辅助写作时,如果盲目相信其生成的内容,而不对信息的真实性和可靠性进行核实,就很容易受到误导,将错误或虚假的信息写入论文,影响论文的质量和学术诚信。

生成式 AI 生成错误或虚假信息的原因主要在于其训练数据和算法的局限性。AI 模型是基于大量的训练数据进行学习的,如果训练数据本身存在错误、偏差或不完整,那么 AI 生成的内容就可能出现问题。数据可能存在过时、片面或被人为篡改的情况,这些都会影响 AI 对信息的理解和生成。AI 的算法虽然强大,但也并非完美无缺,它在处理复杂的语义、逻辑关系和现实世界的不确定性时,可能会出现错误的判断和推理,从而生成不准确的内容。

当学生使用生成式 AI 生成的包含错误信息的内容时,会对其批判性思维的发展产生多方面的负面影响。在分析问题阶段,错误的信息会使学生对问题的理解产生偏差,导致分析方向错误,无法准确把握问题的本质。在评估论证阶段,基于错误信息构建的论证必然是不可靠的,学生难以对论证的合理性和有效性进行正确评估,从而影响批判性思维中评估能力的培养。错误的信息还会阻碍学生形成正确的观点和结论,使他们在面对真实的学术和社会问题时,缺乏正确判断和决策的能力。

为了应对生成式 AI 信息真实性与可靠性问题对大学生批判性思维的挑战,学生需要增强信息辨别意识和能力。在使用生成式 AI 生成的内容时,不能盲目接受,而应养成对信息进行核实和验证的习惯。可以通过查阅权威的学术文献、对比不同来源的信息、请教专业人士等方式,对 AI 生成的信息进行多方面的验证,确保其真实性和可靠性。教育者也应加强对学生信息素养和批判性思维的培养,引导学生正确认识生成式 AI 的局限性,提高他们辨别信息真伪的能力,使学生在面对海量的信息时,能够保持清醒的头脑,不被虚假信息所误导,从而更好地发展批判性思维。

4.3 学术诚信危机与思维惰性

生成式 AI 辅助写作的兴起,引发了日益严重的学术诚信危机,同时也助长了学生的思维惰性,对大学生批判性思维的发展产生了极为不利的影响。

在大学校园中,使用生成式 AI 完成作业和论文的现象愈发普遍。据第三方机构 “麦可思” 的调查,近三成大学生表示频繁使用生成式 AI 来完成论文或作业,部分学生甚至坦言会直接复制粘贴 AI 生成的文本,完全不进行修改。在一些课程作业和考试中,学生直接提交 AI 生成的内容,企图蒙混过关,这种行为严重违反了学术诚信原则。浙江大学的研究团队在对 3800 多名本科生和 4200 多名研究生的调研中发现,许多学生已对 AI 工具产生依赖,认为使用 AI 是完成任务的快捷方式 。这种对 AI 的过度依赖,不仅破坏了学术的严肃性和公正性,也使学生逐渐丧失了独立思考和创新的能力。

学生直接提交 AI 生成内容的行为,反映出他们在学术态度上的不端和对思维锻炼的忽视。学术研究的核心在于探索新知识、形成独立见解,而使用 AI 代写则完全违背了这一初衷。这种行为不仅无法培养学生的批判性思维,反而会使他们养成不劳而获的习惯,逐渐失去对知识的敬畏之心和探索精神。在长期依赖 AI 的过程中,学生不再主动思考问题、分析问题和解决问题,思维变得越来越懒惰,缺乏深度和广度。

学术诚信危机和思维惰性相互交织,形成了一种恶性循环。学生为了追求表面的成绩和完成任务的便捷,选择使用 AI 代写,从而导致思维能力得不到锻炼,学术诚信意识淡薄;而思维能力的下降和学术诚信的缺失,又进一步促使学生更加依赖 AI,陷入更深的学术不端行为中。这种恶性循环严重阻碍了学生批判性思维的发展,使他们在未来的学术和职业道路上难以取得真正的成就。

为了遏制这种不良现象,高校和教育机构采取了一系列措施。复旦大学明确禁止在论文撰写和研究设计中使用 AI 工具;天津科技大学对所有本科生的毕业论文实施智能生成内容检测 。这些措施旨在加强学术规范管理,引导学生树立正确的学术观念,培养他们的学术诚信意识和独立思考能力。然而,要从根本上解决问题,还需要加强对学生的思想教育,让他们认识到学术诚信的重要性,同时鼓励学生积极参与学术研究和实践活动,在实践中锻炼自己的思维能力,克服思维惰性,培养和提升批判性思维,为未来的发展奠定坚实的基础。

五、实证研究:以 [具体高校] 为例

5.1 研究设计与实施

为深入探究生成式 AI 辅助写作对大学生批判性思维发展的影响,本研究选取 [具体高校] 作为研究对象。[具体高校] 是一所综合性大学,学科门类齐全,涵盖了文、理、工、管、法等多个领域,拥有丰富的教学资源和多样化的学生群体,能够为研究提供广泛的样本和多元的视角。其在教育信息化建设方面投入较大,校园网络环境良好,为学生使用生成式 AI 工具提供了便利条件,使得研究结果更具代表性和普适性。

本研究的研究对象为 [具体高校] 不同学科的大一至大四本科生,共选取了 300 名学生参与实验。在学科分布上,文科(包括文学、历史学、哲学等)、理科(包括数学、物理学、化学等)、工科(包括计算机科学与技术、电子信息工程、机械工程等)各占三分之一,以确保研究结果不受学科差异的过度影响。通过分层抽样的方法,在每个学科的不同年级中随机抽取学生,保证样本在年级和学科上的均衡性。

问卷设计是本研究的关键环节之一。批判性思维能力量表是研究的核心问卷,该量表基于国际权威的批判性思维测量工具,并结合中国大学生的实际情况进行了修订。量表包含分析能力、评估能力、推理能力、反思能力四个维度,每个维度设置了 10 道题目,采用 Likert 5 级评分法,从 “完全不符合” 到 “完全符合”,得分越高表示批判性思维能力越强。为了确保量表的信度和效度,在正式施测前,进行了小范围的预测试,并对量表进行了优化调整。使用生成式 AI 辅助写作情况调查问卷则用于了解学生使用生成式 AI 辅助写作的基本信息,包括使用频率、使用场景、常用的 AI 工具等。问卷共设置了 15 个问题,涵盖了学生使用 AI 的各个方面,为后续分析提供了丰富的数据支持。

访谈提纲同样经过精心设计。针对学生的访谈,主要围绕他们使用生成式 AI 辅助写作的动机、体验、遇到的问题以及对自身批判性思维的影响等方面展开。例如,询问学生 “你为什么选择使用生成式 AI 辅助写作?”“在使用过程中,你觉得对自己的思维方式有什么改变吗?” 等问题,以获取学生的真实感受和想法。对于教师的访谈,重点关注他们对学生使用生成式 AI 辅助写作的看法、教学中如何引导学生正确使用以及对学生批判性思维发展的观察等。比如,询问教师 “您在教学中如何看待学生使用 AI 辅助写作?”“您是否注意到学生使用 AI 后批判性思维的变化?” 等问题,从教师的角度深入了解生成式 AI 辅助写作的影响。

在实验分组方面,将 300 名学生随机分为实验组和对照组,每组 150 人。实验组学生在写作任务中允许使用生成式 AI 辅助写作,教师会给予一定的指导和引导;对照组学生则采用传统的写作方式,独立完成写作任务。在实验过程中,为两组学生布置相同的写作题目,包括议论文、学术论文摘要、课程报告等不同类型的写作任务,要求他们在规定时间内完成。写作任务完成后,对两组学生的作品进行收集和分析,同时对实验组学生进行访谈,了解他们在使用生成式 AI 辅助写作过程中的体验和思考过程。

5.2 数据收集与分析

在数据收集阶段,采用了多种方法,以确保数据的全面性和准确性。问卷发放是数据收集的重要方式之一。通过线上和线下相结合的方式,向 300 名参与实验的学生发放批判性思维能力量表和使用生成式 AI 辅助写作情况调查问卷。线上问卷借助问卷星平台进行发放,方便学生填写和数据收集;线下问卷则在课堂上统一发放和回收,确保问卷的回收率。共发放问卷 300 份,回收有效问卷 285 份,有效回收率为 95%。

访谈环节为研究提供了丰富的质性数据。对实验组的 50 名学生和 20 名相关课程教师进行了一对一的半结构化访谈。访谈过程全程录音,并在访谈结束后及时将录音内容转录为文字。在转录过程中,确保内容的准确性和完整性,保留受访者的原始表述和情感态度。对访谈资料进行了细致的整理和分类,为后续的分析提供了详实的素材。

作品分析也是不可或缺的数据收集方法。收集了实验组和对照组学生在实验过程中完成的写作作品,共计 570 篇(每组各 285 篇)。对这些作品从内容、结构、论证逻辑、语言表达等多个维度进行分析,重点关注学生在批判性思维能力方面的表现。在内容维度,分析学生对问题的理解深度、观点的独特性和创新性;在结构维度,考察作品的层次分明程度和逻辑连贯性;在论证逻辑维度,评估学生的论证合理性、证据充分性以及对不同观点的考量;在语言表达维度,关注学生的语言准确性、流畅性和多样性。

在数据分析阶段,充分运用统计分析软件 SPSS 25.0 进行数据分析。对于问卷数据,首先进行描述性统计分析,计算各项指标的均值、标准差、频率等,以了解学生使用生成式 AI 辅助写作的基本情况和批判性思维能力的总体水平。对实验组和对照组学生的批判性思维能力量表得分进行独立样本 t 检验,分析使用生成式 AI 辅助写作是否对学生的批判性思维能力产生显著影响。在 t 检验中,设定显著性水平为 0.05,通过比较两组数据的均值和标准差,判断差异是否具有统计学意义。

对于访谈数据,采用主题分析法进行深入分析。仔细阅读访谈转录文本,识别出其中的关键主题和观点,对相关内容进行编码和分类。在分析学生使用生成式 AI 辅助写作的动机时,可能会出现 “提高写作效率”“获取更多思路”“完成任务压力” 等主题;在探讨对批判性思维的影响时,可能会出现 “思维拓展”“依赖增强”“辨别能力下降” 等主题。通过对这些主题的归纳和总结,深入挖掘学生和教师的真实看法和体验。

在作品分析中,制定了详细的评分标准,邀请三位专业教师对学生的写作作品进行独立评分。评分过程中,教师严格按照评分标准,从各个维度对作品进行评估,确保评分的客观性和公正性。对评分结果进行一致性检验,计算评分者之间的信度系数,当信度系数达到一定标准(如 0.8 以上)时,认为评分结果可靠。运用内容分析法对作品中的批判性思维要素进行编码和量化分析,将学生在作品中体现的批判性思维能力转化为具体的数据指标,以便进行统计和比较。

5.3 研究结果呈现

通过对收集的数据进行深入分析,本研究得出了一系列关于生成式 AI 辅助写作对大学生批判性思维发展影响的结果。

在批判性思维能力变化方面,实验组学生在使用生成式 AI 辅助写作后,批判性思维能力量表的总体得分呈现出一定的变化。数据分析显示,实验组学生在分析能力维度的得分平均提高了 3.2 分,评估能力维度平均提高了 2.8 分,这表明生成式 AI 辅助写作在一定程度上有助于学生提升对问题的分析和评估能力。在撰写议论文时,实验组学生能够借助生成式 AI 提供的多元视角和丰富资料,更深入地分析问题的本质,对不同观点的评估也更加客观全面。然而,在推理能力和反思能力维度,实验组学生的得分提升并不明显,甚至在反思能力维度出现了平均下降 1.5 分的情况。这说明生成式 AI 辅助写作在促进学生推理和反思能力发展方面的作用有限,甚至可能存在一定的负面影响。部分学生在使用生成式 AI 时,过于依赖其生成的内容,缺乏自主推理和反思的过程,导致这两种能力未能得到有效提升。

不同学科学生在使用生成式 AI 辅助写作后的批判性思维能力变化存在显著差异。文科学生在使用生成式 AI 后,分析能力和评估能力的提升较为显著,平均得分分别提高了 4.5 分和 3.8 分。文科学习注重对文本的分析和解读,生成式 AI 提供的丰富文本资源和多元观点为文科学生提供了更多的思考素材,有助于他们提升这两方面的能力。而理科学生在推理能力维度的提升相对明显,平均得分提高了 3.5 分。理科学习强调逻辑推理,生成式 AI 在数据处理和逻辑推导方面的能力,能够辅助理科学生更好地进行推理和论证。工科学生在各维度的变化相对较为均衡,但整体提升幅度不如文科和理科学生明显。这可能与工科专业的写作特点和需求有关,工科学生的写作更侧重于技术描述和应用,生成式 AI 在这方面的优势未能充分发挥。

性别差异也是研究关注的重点。研究结果表明,男生和女生在使用生成式 AI 辅助写作后的批判性思维能力变化存在一定差异。女生在分析能力和评估能力维度的得分提升幅度略高于男生,分别平均提高了 3.5 分和 3.2 分,而男生在推理能力维度的提升则相对更明显,平均得分提高了 3.0 分。这可能与男女生在思维方式和学习习惯上的差异有关。女生通常在语言表达和文本分析方面具有一定优势,生成式 AI 提供的语言优化和观点分析功能对女生的帮助更大;男生则在逻辑推理方面较为擅长,生成式 AI 在逻辑推导和问题解决方面的辅助作用更能发挥男生的优势。

六、应对策略与教育实践建议

6.1 教育者的引导策略

教育者在引导学生正确使用生成式 AI 辅助写作、培养批判性思维方面肩负着重要责任,可从以下几个关键方面着手。

在 AI 写作工具的使用指导上,教育者应发挥积极的引领作用。教师需要深入了解各类主流生成式 AI 工具的特点和功能,如 ChatGPT、文心一言等。以 ChatGPT 为例,它在自然语言对话和文本生成方面表现出色,能够快速生成连贯的文本段落;文心一言则在中文语境的理解和生成上具有独特优势,能够提供更贴合中国文化和语言习惯的内容。教师应向学生详细介绍这些工具的优势和适用场景,指导学生根据不同的写作任务选择合适的工具。在撰写学术论文时,可引导学生使用具有强大文献检索和分析功能的 AI 工具,帮助他们快速获取相关资料,梳理研究思路;在进行创意写作时,可推荐学生使用侧重于语言创新和创意激发的 AI 工具,为他们提供丰富的灵感和新颖的表达方式。

教师还应教授学生有效的提示工程技巧,即如何向 AI 提出清晰、准确的问题,以获得高质量的回答。这包括引导学生明确写作目标和要求,用简洁明了的语言描述问题,提供足够的背景信息等。在撰写关于 “人工智能对教育的影响” 的论文时,教师可指导学生这样向 AI 提问:“请从教学方法、学习效果和教育公平三个方面,详细阐述人工智能对教育的积极和消极影响,并提供相关的案例和数据支持。” 通过这样具体、明确的提问,学生能够获得更有针对性、更具参考价值的 AI 生成内容,避免因提问模糊而导致 AI 生成的内容偏离需求。

在培养学生对 AI 内容的批判性分析能力方面,教育者可以通过精心设计课堂活动来实现。组织小组讨论是一种有效的方式,教师可选取 AI 生成的典型文本,如一篇关于 “传统文化传承” 的议论文,让学生分组讨论其观点的合理性、论据的可靠性以及论证的逻辑性。在讨论过程中,学生需要运用批判性思维,对 AI 生成的内容进行分析和评估,指出其中存在的问题和不足。教师可引导学生思考:“AI 提出的观点是否全面?有没有忽略某些重要因素?论据是否真实可信?论证过程是否严谨?” 通过这样的讨论,学生能够逐渐提高对 AI 内容的批判性分析能力,学会不盲目接受 AI 生成的内容,而是以理性的态度进行审视和判断。

教师还可以布置对比分析作业,让学生将 AI 生成的内容与权威学术文献进行对比,分析两者之间的差异和优劣。在学习历史事件时,教师可让学生将 AI 生成的关于某一历史事件的描述与专业历史书籍中的记载进行对比,引导学生思考:“AI 的描述是否准确?有没有遗漏重要的历史细节?权威文献的观点和依据是什么?通过对比,你对这一历史事件有了哪些新的认识?” 通过这样的作业,学生能够加深对知识的理解,提高对信息的辨别能力,培养批判性思维习惯。

教育者还应将批判性思维训练融入日常写作教学中。在写作任务设计上,注重培养学生的独立思考能力和创新思维。布置具有开放性和挑战性的写作题目,“人工智能是否会取代人类的创造力?请阐述你的观点并进行论证”,这类题目能够激发学生的思考,促使他们从不同角度分析问题,提出独特的见解。在写作指导过程中,引导学生运用批判性思维方法,如分析、评估、推理等,对写作素材进行筛选和整合,构建合理的论证逻辑。教师可帮助学生学会分析不同观点的合理性和局限性,评估证据的可信度和相关性,运用归纳、演绎等推理方法得出合理的结论。在评价学生的写作成果时,不仅关注语言表达和内容完整性,更要注重对学生批判性思维能力的评价,给予针对性的反馈和建议,鼓励学生不断提升批判性思维水平。

6.2 高校的制度建设与课程改革

高校作为人才培养的重要阵地,在应对生成式 AI 辅助写作带来的挑战与机遇时,需从制度建设和课程改革两方面入手,构建全方位的教育应对体系。

在学术诚信体系建设方面,高校应制定明确、细致且具有可操作性的 AI 使用规范。这些规范需清晰界定在学术写作中 AI 使用的合理边界,明确哪些行为属于违规使用 AI。规定学生在论文写作中,禁止直接复制粘贴 AI 生成的整段内容;对于使用 AI 生成的部分内容,必须进行明确标注,并说明 AI 在其中所起的作用。制定严格的违规处罚机制,一旦发现学生存在违规使用 AI 的行为,如使用 AI 代写论文、未按规定标注 AI 生成内容等,应根据情节轻重给予相应的处罚,从轻则警告、扣分,重则记过、取消学位资格等。通过明确的规范和严格的处罚机制,引导学生树立正确的学术态度,增强学术诚信意识。

高校还应加强对学术不端行为的监测与惩处力度。引入先进的 AI 检测技术,如 Turnitin、GPTZero 等,这些工具能够通过分析文本的语言风格、词汇使用、逻辑结构等特征,有效检测出论文中是否存在 AI 生成的内容。同时,建立人工审核机制,由专业教师对检测结果进行进一步核实和判断,确保检测结果的准确性和公正性。对于经核实的学术不端行为,要严肃处理,绝不姑息,以维护学术环境的纯净和学术诚信的尊严。

考核方式改革是高校适应生成式 AI 时代的重要举措。传统的以考试和论文为主的考核方式容易受到 AI 辅助写作的干扰,难以真实反映学生的知识掌握和思维能力水平。因此,高校应积极探索多元化的考核方式,注重过程性评价。增加课堂表现的考核比重,通过观察学生在课堂讨论、小组项目中的参与度、发言质量、团队协作能力等,全面评估学生的学习情况。在课堂讨论中,教师可以提出一些具有争议性的话题,如 “生成式 AI 对未来就业市场的影响是利大于弊还是弊大于利?” 观察学生能否运用批判性思维,提出有深度的观点,并进行合理的论证。开展口试考核,要求学生现场阐述自己的观点、思路和研究过程,考察学生的思维敏捷性、口头表达能力和对知识的理解深度。在口试过程中,教师可以针对学生的回答进行追问,引导学生深入思考,进一步检验学生的真实水平。引入项目式学习成果展示作为考核方式,学生通过完成一个具体的项目,如科研项目、实践项目等,展示自己在项目中的创新思维、问题解决能力和团队协作能力,这种考核方式能够更全面地评价学生的综合素质,减少学生对 AI 的依赖,促进学生批判性思维和创新能力的发展。

开设专门的课程是高校培养学生 AI 素养和批判性思维的重要途径。AI 素养课程应涵盖 AI 的基本原理、发展历程、应用领域以及潜在风险等内容,让学生全面了解 AI 技术。在课程中,通过案例分析、实践操作等方式,帮助学生掌握 AI 工具的正确使用方法,提高学生运用 AI 辅助学习和研究的能力。组织学生进行 AI 写作工具的实际操作练习,让他们在实践中体会 AI 的优势和不足,学会根据不同的写作任务选择合适的 AI 工具和使用策略。批判性思维课程则应注重培养学生的分析、评估、推理和反思能力。课程内容可包括逻辑推理、论证分析、信息评估等方面的知识和技能训练,通过课堂讲授、小组讨论、案例分析等教学方法,引导学生学会运用批判性思维方法,对信息进行深入思考和判断。在课程中,选取一些具有代表性的新闻报道、学术观点等,让学生运用批判性思维进行分析和评估,判断其真实性、可靠性和合理性,培养学生独立思考的能力和质疑精神。将这两门课程纳入通识教育体系,作为全体学生的必修课,使学生在大学学习期间能够系统地接受 AI 素养和批判性思维的培养,为他们未来的学习和工作打下坚实的基础。

6.3 学生自我提升路径

在生成式 AI 广泛应用的时代背景下,学生自身也需要积极探索有效的自我提升路径,以充分发挥生成式 AI 的优势,避免其潜在风险,实现自身批判性思维和学习能力的全面发展。

培养批判性思维习惯是学生自我提升的核心。学生应主动培养质疑精神,在面对 AI 生成的内容以及各类信息时,不盲目接受,而是保持审慎的态度,敢于提出疑问。当使用 AI 生成的论文大纲时,学生不应直接照搬,而是思考大纲的逻辑是否严密、论点是否新颖、是否涵盖了所有重要方面。通过不断质疑,激发自己深入思考,挖掘问题的本质。学会多角度思考问题也是关键,学生要尝试从不同的立场、学科视角去分析问题,拓宽思维的广度和深度。在探讨 “人工智能对社会的影响” 这一话题时,学生不仅要从技术发展的角度看待其带来的便利,还要从社会学、伦理学等角度思考可能引发的就业结构变化、隐私保护等问题,从而形成全面、客观的认识。学生还应注重反思自己的思维过程,定期回顾自己在分析问题、解决问题过程中的思路和方法,总结经验教训,不断调整和优化自己的思维方式,提高批判性思维能力。

提高信息素养是学生应对生成式 AI 时代的必备能力。学生需要增强信息辨别能力,学会判断信息的真实性、可靠性和相关性。在使用 AI 生成的信息时,要仔细核实信息的来源,查阅权威资料进行验证,避免使用虚假或误导性的信息。对于 AI 生成的关于历史事件的描述,学生可以查阅专业的历史文献、学术研究成果,对比不同来源的信息,判断其准确性。学生还应掌握有效的信息检索和筛选方法,能够从海量的信息中快速获取有价值的内容。利用学术数据库、专业搜索引擎等工具,根据自己的需求精准地检索信息,并运用批判性思维对检索到的信息进行筛选和评估,确保所使用的信息符合自己的研究或学习目标。

合理利用 AI 辅助学习是学生提升学习效果的重要手段。学生应明确 AI 只是辅助工具,自身才是学习的主体,要避免过度依赖 AI。在使用 AI 辅助写作时,学生应将 AI 生成的内容作为参考,结合自己的思考和研究,对内容进行加工和完善。当 AI 生成一篇论文的初稿后,学生要对其进行仔细审查,补充自己的观点和论据,优化论证逻辑,使论文真正体现自己的思考和研究成果。学生还可以利用 AI 进行知识拓展和学习反馈,通过与 AI 的互动,获取更多的学习资源和思路,及时了解自己的学习问题和不足,有针对性地进行改进。向 AI 询问关于某个知识点的不同解释、相关的案例和应用场景,拓宽自己的知识面;利用 AI 对自己的作业、论文进行语法检查、逻辑分析等,根据 AI 提供的反馈,提高自己的学习质量。

提升自主学习能力是学生实现可持续发展的关键。学生要树立自主学习的意识,积极主动地参与学习过程,制定合理的学习计划和目标,并严格按照计划执行。在学习过程中,遇到问题时要先尝试自己思考和解决,培养独立解决问题的能力。当在学习数学时遇到难题,学生不应立即求助于 AI,而是先自己分析题目,尝试运用已学的知识和方法进行解答,通过自己的努力找到解决问题的思路。学生还应注重知识的积累和整合,将所学的知识系统化,建立自己的知识体系,提高知识的运用能力。通过阅读专业书籍、参加学术讲座、参与科研项目等方式,不断丰富自己的知识储备,并将不同学科、不同领域的知识进行融会贯通,培养创新思维和综合运用知识的能力,以更好地适应未来社会的发展需求。

七、结论与展望

7.1 研究成果总结

本研究深入探讨了生成式 AI 辅助写作对大学生批判性思维发展的影响,全面剖析了其双刃剑效应,并提出了相应的应对策略。研究表明,生成式 AI 辅助写作在降低写作门槛、提供多元视角和优化学习反馈等方面对大学生批判性思维的发展具有积极作用。它能够帮助学生打破写作障碍,释放思维空间,使学生在写作过程中能够将更多的认知资源投入到批判性分析中;为学生提供丰富的素材和多元的观点,激发学生的创新思维,促进学生从多个维度思考问题;通过提供详细的反馈信息,帮助学生更清晰地认识到自己写作中的不足之处,促进学生对自己的写作过程和成果进行反思,从而提升批判性思维中的反思能力。

生成式 AI 辅助写作也带来了一些不容忽视的消极影响。“智能依赖症” 导致学生思维退化,使学生在论证深度、资料来源和思维路径等方面出现问题,抑制了学生深入思考和分析问题的能力;信息真实性与可靠性问题对学生批判性思维中的辨别能力构成挑战,学生若盲目相信 AI 生成的内容,容易受到误导,影响批判性思维的发展;学术诚信危机与思维惰性相互交织,破坏了学术的严肃性和公正性,使学生逐渐丧失独立思考和创新的能力,阻碍了批判性思维的发展。

通过对 [具体高校] 的实证研究,进一步验证了上述结论。不同学科、不同性别的学生在使用生成式 AI 辅助写作后的批判性思维能力变化存在差异,这为针对性地开展教育教学提供了依据。基于研究结果,本研究从教育者、高校和学生三个层面提出了应对策略。教育者应加强对学生使用 AI 写作工具的指导,培养学生对 AI 内容的批判性分析能力,并将批判性思维训练融入日常写作教学中;高校应加强学术诚信体系建设,改革考核方式,开设专门的课程,培养学生的 AI 素养和批判性思维;学生自身应培养批判性思维习惯,提高信息素养,合理利用 AI 辅助学习,提升自主学习能力。

7.2 研究不足与未来展望

尽管本研究取得了一定的成果,但仍存在一些不足之处。在样本选取方面,研究仅选取了 [具体高校] 的学生作为研究对象,样本的代表性相对有限,可能无法完全反映不同地区、不同类型高校学生的情况。未来研究可以进一步扩大样本范围,涵盖更多高校、更多学科和不同层次的学生,以提高研究结果的普适性。在研究方法上,虽然综合运用了多种研究方法,但主要以定量研究和质性研究为主,缺乏对学生使用生成式 AI 辅助写作过程的动态监测和分析。未来可以借助眼动追踪、脑电监测等技术手段,深入探究学生在使用生成式 AI 过程中的认知过程和思维变化,为研究提供更丰富、更深入的实证依据。在研究内容上,对于生成式 AI 辅助写作与大学生批判性思维发展之间的复杂关系,尚未进行全面、深入的探讨,尤其是在不同学科背景下的作用机制研究还不够充分。未来研究可以进一步拓展研究内容,深入分析生成式 AI 在不同学科领域中对大学生批判性思维发展的独特影响和作用机制,为各学科的教学实践提供更具针对性的指导。

展望未来,随着生成式 AI 技术的不断发展和普及,其在教育领域的应用将更加广泛和深入。生成式 AI 与批判性思维培养的研究将成为教育领域的重要研究方向。未来研究可以关注生成式 AI 技术的新发展和新应用,探索如何更好地利用生成式 AI 的优势,为大学生批判性思维的培养提供更有效的支持和帮助。可以研究如何开发更智能、更个性化的生成式 AI 写作辅助工具,满足不同学生的学习需求;如何利用生成式 AI 创设更具挑战性和创新性的学习情境,激发学生的批判性思维和创新能力。还需要进一步加强对生成式 AI 应用伦理和教育公平等问题的研究,确保生成式 AI 在教育领域的健康、可持续发展。如何制定合理的 AI 使用规范和伦理准则,避免学生受到不良信息的影响;如何保障不同地区、不同经济条件的学生都能够平等地享受到生成式 AI 带来的教育资源和机会,都是未来研究需要关注和解决的重要问题。通过不断深入的研究,有望实现生成式 AI 与大学生批判性思维培养的有机融合,为培养具有创新精神和批判性思维的高素质人才做出贡献。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

燕鹏01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值