蓝桥杯Python 最大连续区间和[动态规划]

本文介绍了一种高效求解最大子序列和的方法,通过动态规划算法实现。针对输入的一组整数序列,该算法能快速找出其中连续子序列的最大和,并附带详细解释及Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

be前言:期末临近,恰好明天考Python,今天就有时间做题了,希望对大家有帮助....(周五考完就可以全面备战蓝桥杯了= =)

问题描述:给定一段长度为N的整数序列A,请从中选出一段连续的子序列(可以为0)使得这段的总和最大

       

 

这里就不提暴力法了,只能在OJ系统里得10分(等于没写.........)下面呈现代码:

N=int(input().strip())
A=list(map(int,input().strip().split()))#输入格式
A.insert(0,0)#初始化
N+=1
dp=list(range(N))#dp[i]代表第i个数字结尾的序列最大值
dp[0]=0
if max(A)<=0:#如果全部是负数则不取 输出0
    print(0)
else:
    for i in range(1,N):
        dp[i]=max(A[i],dp[i-1]+A[i])#下面细说
    print(max(dp)) if max(dp)>0 else print(0)#如果最大子序列和小于0 那就干脆不取 0大于负数
#细说:、
#dp[i]表示第i个数字结尾的子序列最大值
#分析 设第i个数字为a[i] ①dp[i]=a[i]或
(设以a[i]结尾的区间序列和为s1,s2,s3...sn,所以dp[i-1]=max(s1,s2,....sn)
dp[i]=max(s1+a[i],s2+a[i]...sn+a[i])=a[i]+max(s1,s2..sn)
#即 ②dp[i]=a[i]+dp[i-1] 
#故第i个数字为结尾的子序列有两类 所以取较大的值即可

代码核心就是递推关系 上面已经给出证明 欢迎向我提出问题!我是小郑  

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Py小郑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值