AI在企业落地的痛点
在数字化和智能化转型时代,人工智能在各领域的应用潜力得到广泛开发,企业会从精细化的数据搜集中获得更多信息,也会因大量数据积累造成信息冗余,因此借助AI进行高价值信息的提取、治理、分析、预测成了这一时代企业优化的选择。
想象一个场景,您是某汽车公司的管理层,想要测算下一季度某车型在某地的销量走势,您会怎么做?
您可能面临一系列问题:如何选择合适的人工智能模型?选取哪些数据来进行建模,也许要包含车型参数、宏观经济、当地的消费习惯、竞争对手、国家政策、节假日等等特征?如何从模型中洞察关键性的业务决策信息,用来提升销售业绩?如何高效率、低成本、可复用的进行人工智能应用的开发,以及如何将智能应用无缝部署到现有的业务系统?除了销量,您可能还需要成本预测、用户画像以及KOL营销策略、供应链优化、客户反馈评估等智能应用,智能应用多了以后该如何去管理?
面对如此繁杂多变的智能化场景,很多企业由于缺乏清晰的实施路线图,往往无从下手。人工智能的工作流非常复杂,并拥有很大的不确定性,企业应该如何入手才能搭载智能化技术的高速列车,真正用技术为企业创造价值,而不会落入低效率高成本的陷阱?
以上述车企为例,落地AI应用可能会遇到下面这些问题:
1)技术门槛和成本较高:人工智能是一门结合计算机、统计学和认知科学等等的跨学科技术,对于处在数字化转型期的企业来说,企业更加关注的是业务转型和场景优化,而组织拥有产品、算法、前后端的复合技术团队的人力、技术和试错成本都非常高。AI应用的实现过程,包含数据清洗、特征工程、算法设计、算法开发和优化等等,每一步都存在不确定性,需要针对业务场景进行针对性的优化,导致建模的成本高,时间长。
2)业务响应慢:以汽车销量建模为例,从开始需求分析、算法建模,到业务决策、投放KOL广告,过程复杂繁复,有可能错过调整销售策略的最佳窗口期,拖长了需求响应时间,从而造成业务的损失,特别是对一些时机比较敏感的行业,比如快消品生产零售行业,更容易延误战机。
3)黑盒模型缺乏解释性:众所周知人工智能的精度越高,模型越难解释,特别是深度学习算法,人们很难从黑盒化的模型中发现数据洞察和做出业务决策,因此某车型销量下降,是设计因素、当地经济下行还是竞品的营销造成的,因素很难定位。最新的AI研究趋势就包含了模型的可解释性和信任方向的研究。
4)业务零散,交付困难:企业的业务需求往往比较零散,如果需要同时管理销量预测、成本预测、供应链优化等等AI应用,而企业往往缺少统一管理的业务数据、模型运行、监控平台,以及更新和维护机制,造成人力和软硬件资源的浪费,