
The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

The Taichi Programming Language
A Hands-on Tutorial @ SIGGRAPH 2020

Yuanming Hu

1 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

What is Taichi?

High-performance domain-specific language (DSL) embedded in Python, for
computer graphics applications
● Productivity and portability: easy to learn, to write, and to share
● Performance: data-oriented, parallel, megakernels
● Spatially sparse programming: save computation and storage on empty

regions
● Decouple data structures from computation
● Differentiable programming support

2 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Taichi v.s. deep learning frameworks

Why is Taichi different from TensorFlow, PyTorch, NumPy, JAX, ... ?
Quick answer: Taichi uniquely supports megakernels and spatial sparsity.

Longer answer: Those systems serve their own application domains (e.g.,
convolutional neural networks) very well, but their design decisions surrounding
immutable, dense tensors (e.g., feature maps) with simple, regular operators
(e.g., element-wise add and 2D convolutions) do not serve well more irregular
computational patterns, including
● Computer graphics, including physical simulation and rendering
● Irregular neural network layers (e.g., gathering/scattering) that are emerging
● General differentiable programming cases

Without Taichi people tend to manually write CUDA or abuse deep learning
programming interfaces. Taichi offers performance, productivity, and portability in
those cases.

3 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Hello, world! (Julia set, z← z2 + c)

import taichi as ti
ti.init(arch=ti.gpu)
n = 320
pixels = ti.field(dtype=float, shape=(n * 2, n))

@ti.func
def complex_sqr(z):

return ti.Vector([z[0]**2 - z[1]**2, z[1] * z[0] * 2])

@ti.kernel
def paint(t: float):

for i, j in pixels: # Parallized over all pixels
c = ti.Vector([-0.8, ti.cos(t) * 0.2])
z = ti.Vector([i / n - 1, j / n - 0.5]) * 2
iterations = 0
while z.norm() < 20 and iterations < 50:

z = complex_sqr(z) + c
iterations += 1

pixels[i, j] = 1 - iterations * 0.02

gui = ti.GUI("Julia Set", res=(n * 2, n))

for i in range(1000000):
paint(i * 0.03)
gui.set_image(pixels)
gui.show()

More details: ▸doc:Hello, world! Run it: ti example fractal
4 / 52

https://taichi.readthedocs.io/en/latest/hello

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Life of a Taichi kernel

5 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Overview

This talk serves as an introductory course on the syntax of the Taichi
programming language.
● Advanced topics such as data layout specification, sparse data structures, and

advanced differentiable programming will not be covered in this 1-hour
course.
● Slides will be actively updated after the course to keep up with the latest

Taichi system (v0.6.22).
● More details are available in the Taichi documentation (English & Simplified

Chinese).

Note
Many features of Taichi are developed by the Taichi community.
Clearly, I am not the only developer :-)

6 / 52

https://taichi.readthedocs.io/en/latest/

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Table of Contents

1 Getting started

2 Data

3 Computation

4 Objective data-oriented programming

5 Meta-programming

6 Differentiable Programming

7 Debugging

8 Visualization

7 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Installation

Taichi can be installed via pip on 64-bit Python 3.6/3.7/3.8:
python3 -m pip install taichi

Notes
● Taichi supports Windows, Linux, and OS X.
● Taichi runs on both CPUs and GPUs (CUDA/OpenGL/Apple Metal).
● Build from scratch if your CPU is AArch64 or you use Python 3.9+.

8 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Digression: Taichi’s command line interface

Use python3 -m taichi or simply ti to start Taichi’s CLI.

The most important Taichi CLI command: ti example

● ti example: list all examples
● ti example mpm99/sdf_renderer/autodiff_regression/...: run an example
● ti example -p/-P [example]: show the code of the example

Taichi has 40+ minimal language examples. Playing with them is the easiest way
to learn about this language (and to have fun).

9 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Initialization

Always initialize Taichi with ti.init() before you do any Taichi operations.
For example,
ti.init(arch=ti.cuda)

The most useful argument: arch, i.e., the backend (architecture) to use
● ti.x64/arm/cuda/opengl/metal: stick to a certain backend.
● ti.cpu (default), automatically detects x64/arm CPUs.
● ti.gpu, try cuda/metal/opengl. If none is detected, Taichi falls back on CPUs.

Many other arguments will be introduced later in this course.

10 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Table of Contents

1 Getting started

2 Data

3 Computation

4 Objective data-oriented programming

5 Meta-programming

6 Differentiable Programming

7 Debugging

8 Visualization

11 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Data types

Taichi is statically and strongly and typed. Supported types include
● Signed integers: ti.i8/i16/i32/i64

● Unsigned integers: ti.u8/u16/u32/u64

● Float-point numbers: ti.f32/f64

ti.i32 and ti.f32 are the most commonly used types in Taichi. Boolean values
are represented by ti.i32 for now.

Data type compatibility
The CPU and CUDA backends support all data types. Other backend may miss
certain data type support due to backend API constraints. See the documentation
for more details.

12 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Fields

Taichi is a data-oriented programming language where fields are first-class
citizens.
● Fields are essentially multi-dimensional arrays
● An element of a field can be either a scalar (ti.field), a vector

(ti.Vector.field), or a matrix (ti.Matrix.field)
● Field elements are always accessed via the a[i, j, k] syntax. (No pointers.)
● Access out-of-bound is undefined behavior in non-debug mode
● (Advanced) Fields can be spatially sparse

13 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Table of Contents

1 Getting started

2 Data

3 Computation

4 Objective data-oriented programming

5 Meta-programming

6 Differentiable Programming

7 Debugging

8 Visualization

14 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Kernels
In Taichi, computation resides in kernels.

1 The language used in Taichi kernels is similar to Python
2 The Taichi kernel language is compiled, statically-typed, lexically-scoped,

parallel and differentiable
3 Taichi kernels must be decorated with @ti.kernel

4 Kernel arguments and return values must be type-hinted

Examples

@ti.kernel
def hello(i: ti.i32):

a = 40
print('Hello world!', a + i)

hello(2) # "Hello world! 42"

@ti.kernel
def calc() -> ti.i32:

s = 0
for i in range(10):

s += i
return s # 45

15 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Functions
Taichi functions (@ti.func) can be called by Taichi kernels and other Taichi
functions. No type-hints needed for arguments and return values in @ti.func.
Examples

@ti.func
def triple(x):

return x * 3

@ti.kernel
def triple_array():

for i in range(128):
a[i] = triple(a[i])

Note
Taichi functions will be force-inlined. For now, recursion is not allowed.
A Taichi function can contain at most one return statement.

16 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Scalar math

Most Python math operators are supported in Taichi. E.g.,
a + b, a / b, a // b, a % b, ...

Math functions:
ti.sin(x)
ti.cos(x)
ti.asin(x)
ti.acos(x)
ti.atan2(y, x)
ti.sqrt(x)
ti.cast(x, data_type)

ti.floor(x)
ti.ceil(x)
ti.inv(x)
ti.tan(x)
ti.tanh(x)
ti.exp(x)
ti.log(x)

ti.random(data_type)
abs(x)
int(x)
float(x)
max(x, y, ...)
min(x, y, ...)
x ** y

Taichi supports chaining comparisons. For example, a < b <= c != d.

17 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Matrices and linear algebra

ti.Matrix is for small matrices (e.g. 3 × 3) only. If you have 64 × 64 matrices,
please consider using a 2D scalar field.
ti.Vector is the same as ti.Matrix, except that it has only one column.
Common matrix operations:

A.transpose()
A.inverse()
A.trace()
A.determinant(type)
v.normalized()
A.cast(type)
A + B, A * B, A @ B, ...

R, S = ti.polar_decompose(A, ti.f32)
U, sigma, V = ti.svd(A, ti.f32)
sigma is a diagonal *matrix*

ti.sin(A)/cos(A)... # element-wise
u.dot(v) # returns a scalar
u.outer_product(v) # returns a matrix

Warning
Element-wise product * and matrix product @ have different behaviors.

18 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Parallel for-loops

Two types of for loops in Taichi:
● Range-for loops, which are no different from Python for loops, except that

it will be parallelized when used at the outermost scope. Range-for loops can
be nested.
● Struct-for loops, which iterates over (sparse) field elements. (More on this

later.)

For loops at the outermost scope in a Taichi kernel are automatically
parallelized.

19 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Range-for loops

Examples

@ti.kernel
def fill():

for i in range(10): # Parallelized
x[i] += i

s = 0
for j in range(5): # Serialized in each parallel thread

s += j

y[i] = s

@ti.kernel
def fill_3d():

Parallelized for all 3 <= i < 8, 1 <= j < 6, 0 <= k < 9
for i, j, k in ti.ndrange((3, 8), (1, 6), 9):

x[i, j, k] = i + j + k

20 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Range-for loops

Note
It is the loop at the outermost scope that gets parallelized, not the outermost
loop.
@ti.kernel
def foo():

for i in range(10): # Parallelized
...

@ti.kernel
def bar(k: ti.i32):

if k > 42:
for i in range(10): # Serial

...

21 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Struct-for loops

Examples

import taichi as ti

ti.init(arch=ti.gpu)

n = 320
pixels = ti.field(dtype=ti.f32, shape=(n * 2, n))

@ti.kernel
def paint(t: ti.f32):

for i, j in pixels: # Parallized over all pixels
pixels[i, j] = i * 0.001 + j * 0.002 + t

paint(0.3)

The struct-for loops iterates over all the field coordinates, i.e.
(0,0), (0,1), (0,2), ..., (0,319), (1,0), ..., (639,319).

22 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Atomic operations
In Taichi, augmented assignments (e.g., x[i] += 1) are automatically atomic.

Examples
When modifying global variables in parallel, make sure you use atomic operations.
For example, to sum up all the elements in x,
@ti.kernel
def sum():

for i in x:
Approach 1: Correct
total[None] += x[i]

Approach 2: Correct
ti.atomic_add(total[None], x[i])

Approach 3: Wrong result due to data races
total[None] = total[None] + x[i]

23 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Taichi-scope v.s. Python-scope

Definition
Taichi-scope: Everything decorated with ti.kernel and ti.func.

Definition
Python-scope: Code outside Taichi-scope.

Note
1 Code in Taichi-scope will be compiled by the Taichi compiler and run on

parallel devices.
2 Code in Python-scope is simply Python code and will be executed by the

Python interpreter.

24 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Playing with fields in Taichi-scope

Of course, fields can be manipulated in Taichi-scope as well:
import taichi as ti
ti.init()

a = ti.field(dtype=ti.f32, shape=(42, 63)) # A field of 42x63 scalars
b = ti.Vector.field(3, dtype=ti.f32, shape=4) # A field of 4x 3D vectors
C = ti.Matrix.field(2, 2, dtype=ti.f32, shape=(3, 5)) # A field of 3x5 2x2 matrices

@ti.kernel
def foo():

a[3, 4] = 1
print('a[3, 4] =', a[3, 4])
"a[3, 4] = 1.000000"

b[2] = [6, 7, 8]
print('b[0] =', b[0], ', b[2] =', b[2])
"b[0] = [[0.000000], [0.000000], [0.000000]] , b[2] = [[6.000000], [7.000000], [8.000000]]"

C[2, 1][0, 1] = 1
print('C[2, 1] =', C[2, 1])
C[2, 1] = [[0.000000, 1.000000], [0.000000, 0.000000]]

foo()

25 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Phases of a Taichi program

1 Initialization: ti.init(...)

2 Field allocation: ti.field, ti.Vector.field, ti.Matrix.field

3 Computation (launch kernels, access fields in Python-scope)
4 Optional: restart the Taichi system (clear memory, destroy all variables and

kernels): ti.reset()

Note
For now, after the first kernel launch or field access in Python-scope, no more field
allocation is allowed.

26 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Putting everything together: fractal.py

import taichi as ti

ti.init(arch=ti.gpu)

n = 320
pixels = ti.field(dtype=ti.f32, shape=(n * 2, n))

@ti.func
def complex_sqr(z):

return ti.Vector([z[0]**2 - z[1]**2, z[1] * z[0] * 2])

@ti.kernel
def paint(t: ti.f32):

for i, j in pixels: # Parallized over all pixels
c = ti.Vector([-0.8, ti.cos(t) * 0.2])
z = ti.Vector([i / n - 1, j / n - 0.5]) * 2
iterations = 0
while z.norm() < 20 and iterations < 50:

z = complex_sqr(z) + c
iterations += 1

pixels[i, j] = 1 - iterations * 0.02

gui = ti.GUI("Julia Set", res=(n * 2, n))

for i in range(1000000):
paint(i * 0.03)
gui.set_image(pixels)
gui.show()

27 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Table of Contents

1 Getting started

2 Data

3 Computation

4 Objective data-oriented programming

5 Meta-programming

6 Differentiable Programming

7 Debugging

8 Visualization

28 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

ODOP: Using classes in Taichi

● Taichi is a data-oriented programming (DOP) language...
● ... but simple DOP makes code modularization hard
● To improve code reusability, Taichi borrows some concepts from

object-oriented programming (OOP)
● The hybrid scheme is called objective data-oriented programming (ODOP)
● Three important decorators

● Use @ti.data_oriented to decorate your class
● Use @ti.kernel to decorate class members functions that are Taichi kernels
● Use @ti.func to decorate class members functions that are Taichi functions

● Development story (Chinese)

29 / 52

https://zhuanlan.zhihu.com/p/114300894

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

ODOP: An example

Demo: ti example odop_solar a = GMr/∣∣r∣∣32
import taichi as ti

@ti.data_oriented
class SolarSystem:

def __init__(self, n, dt):
self.n = n
self.dt = dt
self.x = ti.Vector.field(2, dtype=ti.f32, shape=n)
self.v = ti.Vector.field(2, dtype=ti.f32, shape=n)
self.center = ti.Vector.field(2, dtype=ti.f32, shape=())

@staticmethod
@ti.func
def random_around(center, radius):

random number in [center - radius, center + radius)
return center + radius * (ti.random() - 0.5) * 2

@ti.kernel
def initialize(self):

for i in range(self.n):
offset = ti.Vector([0.0, self.random_around(0.3, 0.15)])
self.x[i] = self.center[None] + offset
self.v[i] = [-offset[1], offset[0]]
self.v[i] *= 1.5 / offset.norm()

30 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

ODOP: An example (continued)

@ti.func
def gravity(self, pos):

offset = -(pos - self.center[None])
return offset / offset.norm()**3

@ti.kernel
def integrate(self):

for i in range(self.n):
self.v[i] += self.dt * self.gravity(self.x[i])
self.x[i] += self.dt * self.v[i]

solar = SolarSystem(9, 0.0005)
solar.center[None] = [0.5, 0.5]
solar.initialize()

gui = ti.GUI("Solar System", background_color=0x25A6D9)

while True:
if gui.get_event():

if gui.event.key == gui.SPACE and gui.event.type == gui.PRESS:
solar.initialize()

for i in range(10):
solar.integrate()

gui.circle([0.5, 0.5], radius=20, color=0x8C274C)
gui.circles(solar.x.to_numpy(), radius=5, color=0xFFFFFF)
gui.show()

31 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Table of Contents

1 Getting started

2 Data

3 Computation

4 Objective data-oriented programming

5 Meta-programming

6 Differentiable Programming

7 Debugging

8 Visualization

32 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Metaprogramming

Taichi provides metaprogramming tools. Metaprogramming can
● Allow users to pass almost anything (including Taichi fields) to Taichi kernels
● Improve run-time performance by moving run-time costs to compile time
● Achieve dimensionality independence (e.g. write 2D and 3D simulation code

simultaneously.)
● Simplify the development of Taichi standard library

Taichi kernels are lazily instantiated and a lot of computation can happen at
compile time. Every kernel in Taichi is a template kernel, even if it has no
template arguments.

33 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Templates

@ti.kernel
def copy(x: ti.template(), y: ti.template(), c: ti.f32):

for i in x:
y[i] = x[i] + c

Template instantiation
Kernel templates will be instantiated on the first call, and cached for later calls
with the same template signature (see doc for more details).

Template argument takes (almost) everything
Feel free to pass fields, classes, functions, strings, and numerical values to
arguments hinted as ti.template().

34 / 52

https://taichi.readthedocs.io/en/latest/compilation.html

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Template kernel instantiation

Be careful!
import taichi as ti
ti.init()

@ti.kernel
def hello(i: ti.template()):

print(i)

for i in range(100):
hello(i) # 100 different kernels will be created

@ti.kernel
def world(i: ti.i32):

print(i)

for i in range(100):
world(i) # The only instance will be reused

35 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Dimensionality-independent programming

Examples

@ti.kernel
def copy(x: ti.template(), y: ti.template()):

for I in ti.grouped(y):
x[I] = y[I]

@ti.kernel
def array_op(x: ti.template(), y: ti.template()):

for I in ti.grouped(x):
I is a vector of size x.dim() and dtype i32
y[I] = I[0] + I[1]

If x is 2D field, the above is equivalent to
for i, j in x:

y[i, j] = i + j

Application: write simulation code that works for both 2D & 3D.
36 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Field-size reflection

Fetch field dimensionality info as compile-time constants:
import taichi as ti

ti.init()
field = ti.field(dtype=ti.f32, shape=(4, 8, 16, 32, 64))

@ti.kernel
def print_shape(x: ti.template()):

ti.static_print(x.shape)
for i in ti.static(range(len(x.shape))):

print(x.shape[i])

print_shape(field)

37 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Compile-time branching

Using compile-time evaluation will allow certain computations to happen when
kernels are being instantiated. This saves the overhead of those computations at
runtime. (C++17 equivalence: if constexpr.)
enable_projection = True

@ti.kernel
def static():

if ti.static(enable_projection): # No runtime overhead
x[0] = 1

38 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Forced loop-unrolling

Use ti.static(range(...)) to unroll the loops at compile time:
import taichi as ti

ti.init()
x = ti.Vector.field(3, dtype=ti.i32, shape=16)

@ti.kernel
def fill():

for i in x:
for j in ti.static(range(3)):

x[i][j] = j
print(x[i])

fill()

39 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Forced loop-unrolling

Why unroll the range-for loops?
● To optimize for performance.
● To loop over vector/matrix elements. Indices into Taichi vectors or matrices

must be compile-time constants. Indices into Taichi fields can be run-time
variables. For example, if x is a 1D field of 3D vectors, accessed as
x[field_index][matrix_index]. The first index can be a variable, yet the
second must be a compile-time constant.

40 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Variable aliasing

Taichi allows programmers to create aliases using ti.static. For example,
a = ti.static(a_field_or_kernel_with_very_long_name).
This can sometimes improve readability. For example,
@ti.kernel
def my_kernel():

for i, j in field_a:
field_b[i, j] = some_function(field_a[i, j]) + some_function

(field_a[i + 1, j])

can be simplified into
@ti.kernel
def my_kernel():

a, b, fun = ti.static(field_a, field_b, some_function)
for i,j in a:

b[i,j] = fun(a[i,j]) + fun(a[i + 1,j])

41 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Table of Contents

1 Getting started

2 Data

3 Computation

4 Objective data-oriented programming

5 Meta-programming

6 Differentiable Programming

7 Debugging

8 Visualization

42 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Differentiable Programming

Forward programs evaluate f(x); backward (gradient) programs evaluate ∂ f(x)
∂x .

Taichi supports reverse-mode automatic differentiation (AutoDiff) that
back-propagates gradients w.r.t. a scalar (loss) function f(x).

Two ways to compute gradients:
1 Use Taichi’s tape (ti.Tape(loss)) for both forward and gradient evaluation.
2 Explicitly use gradient kernels for gradient evaluation with more controls.

43 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Gradient-based optimization

minx L(x) = 1
2

n−1
∑
i=0
(xi − yi)2.

1 Allocating fields with gradients:
x = ti.field(dtype=ti.f32, shape=n, needs_grad=True)

2 Defining loss function kernel(s):
@ti.kernel
def reduce():

for i in range(n):
L[None] += 0.5 * (x[i] - y[i])**2

3 Compute loss with ti.Tape(loss=L): reduce()

4 Gradient descent: for i in x: x[i] -= x.grad[i] * 0.1

Demo: ti example autodiff_minimization
Another demo: ti example autodiff_regression

44 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Application 1: Forces from potential energy gradients

From the definition of potential energy:

fi = −
∂U(x)

∂xi

Manually deriving gradients is hard. Let’s use AutoDiff:
1 Allocate a 0D field to store the potential energy:

potential = ti.field(ti.f32, shape=()).
2 Define forward kernels that computes potential energy from x[i].
3 In a ti.Tape(loss=potential), call the forward kernels.
4 Force on each particle is -x.grad[i].

45 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Application 2: Differentiating a whole physical process

10 Demos: DiffTaichi (xt+1,vt+1, ...) = F(xt,vt, ...)
Pattern:
with ti.Tape(loss=loss):

for i in range(steps - 1):
simulate(i)

Computational history
Always keep the whole computational history of time steps for end-to-end
differentiation. I.e., instead of only allocating
ti.Vector.field(3, dtype=ti.f32, shape=(num_particles)) that stores the latest
particles, allocate for the whole simulation process
ti.Vector.field(3, dtype=ti.f32, shape=(num_timesteps, num_particles)). Do not
overwrite! (Use checkpointing to reduce memory consumption.)

46 / 52

https://github.com/yuanming-hu/difftaichi

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Table of Contents

1 Getting started

2 Data

3 Computation

4 Objective data-oriented programming

5 Meta-programming

6 Differentiable Programming

7 Debugging

8 Visualization

47 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Debug mode
ti.init(debug=True, arch=ti.cpu) initializes Taichi in debug mode, which enables
bound checkers (CPU and CUDA). See the doc more on debug mode.
Examples

import taichi as ti
ti.init(debug=True)

a = ti.field(ti.i32, shape=10)
b = ti.field(ti.i32, shape=10)

@ti.kernel
def shift():

for i in range(10):
a[i] = b[i + 1] # Runtime error (out-of-bound)
assert i < 5 # Runtime assertion failure

shift()

48 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Table of Contents

1 Getting started

2 Data

3 Computation

4 Objective data-oriented programming

5 Meta-programming

6 Differentiable Programming

7 Debugging

8 Visualization

49 / 52

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Visualize you results

Visualizing 2D results
Simply make use of Taichi’s GUI system. Useful functions:
● gui = ti.GUI("Taichi MLS-MPM-128", res=512, background_color=0x112F41)

● gui.circle/gui.circles(x.to_numpy(), radius=1.5, color=colors.to_numpy())

● gui.line/triangle/set_image/show/... [doc]

Visualizing 3D results
Exporting 3D particles and meshes using ti.PLYWriter [doc]
Demo: ti example export_ply/export_mesh
Use Houdini/Blender to view (and render) your 3D results.

50 / 52

https://taichi.readthedocs.io/en/latest/gui.html
https://taichi.readthedocs.io/en/latest/export_results.html#export-ply-files

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Making a video

Make an mp4 video out of your 2D frames

1 Use ti.GUI.show [doc] to save the screenshots. Or simply use
ti.imwrite(img, filename) [doc].

2 ti video creates video.mp4 using frames under the current folder. To specify
frame rate, use ti video -f 24 or ti video -f 60.

3 Convert mp4 to gif and share it online: ti gif -i input.mp4.

Make sure ffmpeg works!
● Linux and OS X: with high probability you already have ffmpeg.
● Windows: install ffmpeg on your own [doc].

More information: [Documentation] Export your results.
51 / 52

https://taichi.readthedocs.io/en/latest/export_results.html#export-images-using-ti-gui-show
https://taichi.readthedocs.io/en/latest/export_results.html#export-images-using-ti-imwrite
https://taichi.readthedocs.io/en/latest/export_results.html#install-ffmpeg-on-windows
https://taichi.readthedocs.io/en/latest/export_results.html#export-your-results

The Taichi
Programming

Language

Yuanming Hu

Getting started

Data

Computation

Objective
data-oriented
programming

Meta-
programming

Differentiable
Programming

Debugging

Visualization

Thank you!

Next steps
More details: Please check out the Taichi documentation
Found a bug in Taichi? Raise an issue
Join us: Contribution Guidelines

Acknowledgements
Yuanming Hu is grateful to his Ph.D. advisors Prof. Frédo Durand and Prof. Bill
Freeman at MIT, and his internship mentor Dr. Vinod Grover at NVIDIA, for
supporting the development of Taichi.
Taichi is a collaborative project. We appreciate everyone’s contributions.

SIGGRAPH 2020 Taichi Course Online Q&A Session
Time: Friday, 28 August 2020 9:00am - 9:30am (Pacific Time)
Please come chat with us! Questions are welcome :-)

52 / 52

https://taichi.readthedocs.io/en/latest/
https://github.com/taichi-dev/taichi/issues
https://taichi.readthedocs.io/en/latest/contributor_guide.html
https://github.com/taichi-dev/taichi/graphs/contributors

