AI工具【OCR 01】Java可使用的OCR工具Tess4J使用举例(身份证信息识别核心代码及信息提取方法分享)

本文介绍了如何在Java中使用Tess4J进行光学字符识别(OCR),包括依赖安装、语言数据包配置,以及实际应用如身份证信息提取。文章指出Tess4J易于使用但识别率有待提升,提醒开发者注意优化和场景选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.简介

1.1 简单介绍

Lept4J和Tess4J都是基于Tesseract OCR引擎的Java接口,可以用来识别图像中的文本:

  • 前者是Leptonica图像处理库的Java封装,提供了图像的加载、处理、分析等功能。
  • 后者是Tesseract OCR引擎的Java封装,提供了图像的OCR识别、PDF文档的生成等功能。

Lept4J和Tess4J的区别在于,Lept4J主要负责图像的预处理,而Tess4J主要负责图像的后处理,特点分别是:

  • Lept4J支持多种图像格式,可以进行图像的缩放、旋转、裁剪、二值化、降噪等操作,提高图像的质量和识别率。
  • Tess4J支持多种语言的识别,可以生成文本、HTML、PDF等格式的输出,提供了多种识别模式和参数设置,满足不同的需求。

根据具体场景和需求,可以选择使用Lept4J或Tess4J,或者结合使用两者,以达到最佳的效果。

1.2 官方说明

官网:https://tess4j.sourceforge.net/
描述:A Java JNA wrapper for Tesseract OCR API.Tess4J is released and distributed under the Apache License, v2.0 and is also available from Maven Central Repository.
特性:The library provides optical character recognition (OCR) support for:

  • TIFF, JPEG, GIF, PNG, and BMP image formats
  • Multi-page TIFF images
  • PDF document format

2.使用举例

2.1 依赖及语言数据包

<!-- https://mvnrepository.com/artifact/net.sourceforge.tess4j/tess4j -->
<dependency>
		<groupId>net.sourceforge.tess4j</groupId>
		<artifactId>tess4j</artifactId>
		<version>5.9.0</version>
</dependency>

语言数据包下载地址:https://github.com/tesseract-ocr/tessdata
LanguageData.jpg

2.2 核心代码

    /**
     * 识别图片字符信息
     *
     * @param imagePath 图片路径
     */
    private static String recognitionString(String imagePath) {
   
   
        File imageFile = new File(imagePath);
        ITesseract instance = new Tesseract();
        // 1.语言数据包路径
        instance.setDatapath("tessdata");
        // 2.加载语言文件名称
        instance.setLanguage("chi_sim");
        String result = "";
        try {
   
   
            result = instance.doOCR(imageFile);
        } catch (TesseractException e) {
   
   
            e.printStackTrace();
        }
        return result;
    }

2.3 识别身份证信息

2.3.1 核心代码

    /**
     * 识别身份证信息
     *
     * @param imagePath 图片路径
     */
    private static 
评论 38
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuanzhengme.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值