Pruning 系列 (九)自定义pruning方法

本文档介绍了如何在PyTorch中自定义修剪(pruning)方法,通过继承BasePruningMethod基类并实现特定的__init__和compute_mask方法。教程详细阐述了如何在模型优化中应用自定义的pruning策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境

  • python 3.9
  • numpy 1.24.1
  • pytorch 2.0.0+cu117

一、pruning参考

要实现自己的修剪函数,可以通过将BasePruningMethod基类子类化来扩展nn.utils.prune模块,方法与所有其他修剪方法相同。基类为您实现以下方法:__call__、apply_mask、apply、prune和remove。除了一些特殊情况外,您不应该为新的修剪技术重新实现这些方法。然而,您必须实现__init__(构造函数)和compute_mask(关于如何根据修剪技术的逻辑计算给定张量的mask的说明)。此外,您必须指定该技术实现的修剪类型(支持的选项包括全局、结构化和非结构化)。在迭代应用修剪的情况下,需要这一点来确定如何组合mask。换句话说,当修剪预编辑参数时,当前修剪技术预期作用于参数的未修剪部分。指定PRUNING_TYPE将使PruningContainer(处理修剪mask的迭代应用)能够正确标识要修剪的参数的切片。

BasePruningMethod文档地址

BasePruningMethod.compute_mask

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_yuki_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值