pytorch笔记(十)Batch Normalization

本文介绍了Batch Normalization(BN)的作用,包括加快收敛、提升精度和减少过拟合。详细阐述了数据归一化的两种方法,重点讨论了BN的数据归一化过程,分为计算批次均值与方差、归一化、尺度变换和偏移四个步骤。BN的核心在于通过γ和β参数适应性地调整归一化后的数据,以保持网络的表达能力。此外,还提到了BN在神经网络训练中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境

  • python 3.9
  • numpy 1.24.1
  • pytorch 2.0.0+cu117

一、Batch Normalize 作用

  • 加快收敛、提升精度:对输入进行归一化,从而使得优化更加容易
  • 减少过拟合:可以减少方差的偏移
  • 可以使得神经网络使用更高的学习率:BN 使得神经网络更加稳定,从而可以使用更大的学习率,加速训练过程
  • 甚至可以减少 Dropout 的使用:因为 BN 可以减少过拟合,所以有了 BN,可以减少其他正则化技术的使用

二、数据归一化

方法1) [0,1]归一化,使结果值映射到[0,1]之间

x^{*} = \frac{x-min}{max-min}

方法2)正态分布归一化,这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_yuki_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值