栏目介绍: “论文快讯”栏目旨在精简地分享一周内发表在高水平期刊上的Metasurface领域研究成果,帮助读者及时了解领域前沿动态,如果对专栏的写法或内容有什么建议欢迎留言,后续会陆续开启其他专栏,敬请期待。
-
论文基本信息:
标题:Accelerating Cross-Scenario Metasurface Adaptability with Plug-and-Play Kernel
作者:
Nanxuan Wu - 浙江大学伊利诺伊大学厄巴纳香槟校区联合学院;
通讯作者 钱超 - 浙江大学伊利诺伊大学厄巴纳香槟校区联合学院;
Zhedong Wang - 杭州电子科技大学浙江省智能汽车电子技术重点实验室;
Xiaoyue Zhu - 浙江大学伊利诺伊大学厄巴纳香槟校区联合学院;
Cheng Xiao - 浙江大学伊利诺伊大学厄巴纳香槟校区联合学院;
Erping Li - 浙江大学伊利诺伊大学厄巴纳香槟校区联合学院;
通讯作者 陈红胜- 浙江大学伊利诺伊大学厄巴纳香槟校区联合学院。发表时间:2025年4月30日(2025年1月27日投稿,2025年3月8日返修)
发表期刊:Advanced Functional Materials(JCR-Q1,IF=18.5) -
论文快览:
-
解决的问题:
智能超表面在动态环境中需快速适应多变场景,但现有方法依赖大量场景特定数据训练,导致计算效率低下且难以应对随机散射事件的不可预测性。传统方案需分步训练多个专用网络或依赖单一通用网络,存在数据冗余、泛化能力弱及物理可解释性不足的缺陷,尤其在实时应用中面临训练延迟与抗干扰能力不足的挑战。当前研究亟需一种跨场景适应性框架,以解决智能超表面在复杂电磁环境中的快速重构与稳定性能维持难题。提出的方法:
本研究提出基于即插即用内核的强化学习框架,通过经验复用与物理驱动优化提升超表面跨场景适应性。内核由策略网络、记忆存储模块与初始化模块构成,策略网络通过强化学习生成超表面调控策略,记忆模块存储历史场景的电磁响应特征与网络参数。当切换至新场景时,内核通过相似性函数匹配历史特征,加载最优初始参数并动态调整网络权重,减少训练数据需求。结合物理模型约束,策略网络通过时序差分误差优化动作策略,实现实时调控与散射抑制。实现的效果:
实验表明,该方案在点对点、路径对路径及场景对场景适应中,训练时间较直接学习减少33%至67%,散射相似性达93%以上。宽带实验中,超表面在3.7–6.3 GHz频段内实现50%相对带宽的隐身性能,相似性从86%提升至93%。动态车辆隐身实验中,实时调控响应时间低于0.1秒,验证了复杂移动场景下的鲁棒性。创新点分析:
本研究的核心突破在于将经验复用机制与物理可解释性深度耦合,首次实现智能超表面的跨场景快速适应。通过即插即用内核提取历史场景的物理特征(如雷达散射截面),规避传统黑箱模型的非唯一性缺陷,将训练效率提升两倍。强化学习框架结合时序差分误差优化,将电磁响应与动作策略的动态关联转化为可微问题,解决了传统方法在随机干扰下的稳定性瓶颈。这种“经验-物理”协同范式为实时自适应隐身、通信系统提供了可扩展解决方案,推动了智能超表面从实验室验证向工程化应用的跨越。
-
论文重要图文:
摘要:超表面适应性指其动态调整内部特性以适应环境变化并满足多样化需求的关键能力。尽管智能驱动型超表面技术快速发展,但由于散射事件的随机性与不可预测性,现有方案仍缺乏跨场景任务的类比推理能力。本文提出一种兼容型即插即用方案,助力超表面实现跨环境适应性迁移。与传统分步训练不同,该方案通过将历史经验封装为内核包,快速建立具有物理可解释性的可靠神经网络。以隐身斗篷为演示对象,搭建全智能系统并完成点对点、路径到路径、场景到场景三阶段适应性验证,相比直接学习方法实现显著速度提升。进一步借助谐振超表面,将即插即用内核拓展至相对带宽50%的宽带性能。该工作为超表面在新环境(含未知场景)中的适应性提升提供了高效易行的解决方案,推动智能自适应超器件的蓬勃发展。
结论:总结而言,我们通过即插即用内核成功提升了跨场景超表面适应性。该方法融合经验驱动与自主优化优势,在快速训练与实时调谐方面实现重大突破。通过隐身斗篷的仿真与实验验证,证实了跨场景自适应设计方案的优越性。相比直接学习,超表面适应性显著增强,在减少时间投入的同时获得更优散射重构与全路径稳定性。随着场景变化,即插即用内核所需的训练周期较直接学习进一步缩短至1/2至1/3,且有望收敛至最小时间成本并实现实时响应。该内核基于数据与历史经验识别的模式动态调整策略生成,有效应对场景变化。实验证明,所提实时自适应设计方法以最小数据需求与快速响应能力推动跨场景智能超表面迈向高效可复现性能新高度。由于任务输入输出空间庞大(存在2^32种潜在动作)且需在场景变化后寻优,本研究采用强化学习作为即插即用内核载体。但该方案可拓展至其他类型神经网络,解决更多跨场景实时问题。当前各类设计方法(含本方案)均面临无序环境挑战,导致前期准备时间延长与初始学习速度减缓。然而,完成初始场景训练后,后续任务效率将大幅提升。通过扩展存储容量与增加网络参数,本方法能更快捕获关键场景变化,展现优于传统方法的稳定性,在实际应用中更具鲁棒性与实效性。展望未来,将多模块感知与决策系统轻量化集成,实现多功能精细调控具有重要价值。更重要的是,跨场景超表面可提升主观功能切换兼容性,泛化相位、振幅、偏振及轨道角动量调控能力。在技术革新时代,基于智能隐身斗篷成功经验的即插即用方案,有望成为满足通信、传感与成像领域定制化需求的强效工具。本工作将推动自适应超器件向集成化通用智能模块发展,实现对电磁波的协同探测、计算与控制。
图1 基于即插即用内核的跨场景超表面适应性示意图。即插即用内核封装场景1的超表面知识库,并迁移至场景2子任务中,旨在加速新环境下超表面适应性。底部时钟表示行为时序,角色通过即插即用内核成功设计跨场景超表面;而相同时间内仅采用直接学习方法则无法满足需求。快速适应性挑战源于全局逆向设计的复杂性,传统方法难以在随机扰动、复杂散射与外部环境变化等现实困境中建立设计策略与复杂响应间的可靠关联。
图2 即插即用内核架构与仿真验证。(a) 策略网络框架。(b) 场景1超表面隐身斗篷示意图。© 场景1训练周期内随机变量演化,表征策略生成与实际执行的一致性。(d) 直接学习网络在场景1实现的隐身性能。(e,h) 不同场景示意图。(f,i) 场景2(3)中直接学习(蓝色曲线上方)与即插即用方案(紫色曲线下方)训练效果对比。(g,j) 直接学习(绿色曲线上方)与即插即用方案(红色曲线下方)隐身性能对比。
图3 跨场景超表面实验构建系统。实验系统包含四大模块:超表面控制模块实现优化设计与电调控,调谐指令编码为二进制信号传输至电势控制芯片;状态采集模块执行散射探测与定位;载体控制模块调控载体运动轨迹;超表面设计模块展示超原子结构(黄色为铜层,红色为介电常数为3.5的介质层)及其反射特性。结构参数:H1=2 mm,Hair=5 mm,H2=3 mm,d=3 mm,Lm=18 mm,Wm=14 mm,Px=24 mm,Py=16 mm,采用双二极管调控反射响应。
图4 自适应方法三阶段实验验证。(a) 点对点自适应实验:场地周边设置三接收天线,超表面从点1适应至点2。(b) 阶段1隐身性能:横向划分表示不同天线采集数据,纵向划分表示不同点位训练结果。© 阶段1训练耗时变化(以天线B接收强度为指令),虚线箭头凸显适应性增强带来的训练加速效应。(d) 路径到路径自适应实验示意图。(e) 阶段2隐身性能。(f) 阶段2训练耗时变化。(g) 场景到场景自适应实验:超表面从场景1适应至场景3,载体在训练与测试中随机移动于复合路径(路径1+路径2)。(h) 阶段3隐身性能:展示三场景下三组天线数据的九组强度曲线,验证即插即用方案优越性。(i) 阶段3训练耗时变化。
图5 宽带超表面适应性实验。(a) 宽带入射下场景到场景适应实验:超表面从场景4适应至场景5,载体在训练与测试中随机移动。(b) 宽带场景适应隐身性能:横向划分表示不同天线数据,纵向划分表示不同场景训练结果。© 训练耗时:按三组天线接收强度划分场景4与5间不同速度变化的训练耗时对比。
参考文献:
- N. Wu, C. Qian, Z. Wang, X. Zhu, C. Xiao, E. Li, H. Chen , Accelerating Cross-Scenario Metasurface Adaptability with Plug-and-Play Kernel. Adv. Funct. Mater. 2025, 2502678.
DOI:https://doi.org/10.1002/adfm.202502678
免责声明:
本公众号专注于超表面领域的最新研究动态、学术成果和技术应用分享。所有发布的内容和图片,均已标明来源,且仅供个人学术学习和知识积累使用,不得用于商业目的。如您发现任何版权或相关问题,欢迎通过邮箱 metasurface@126.com 联系我们,我们将尽快处理并协调相关事宜。