栏目介绍: “论文快讯”栏目旨在精简地分享一周内发表在高水平期刊上的Metasurface领域研究成果,帮助读者及时了解领域前沿动态,如果对专栏的写法或内容有什么建议欢迎留言,后续会陆续开启其他专栏,敬请期待。
-
论文基本信息:
标题:
RGB Achromatic Metalens for Neural Network‐Enhanced High Resolution Digital Imaging
作者:
Pengshuai Zhang(中山大学物理学院);
Liheng Yan(中山大学物理学院);
通讯作者 梁浩文(中山大学物理学院);
通讯作者 Jianchao Zhang(海信激光显示有限公司);
通讯作者 李俊韬(中山大学物理学院);
Xue-Hua Wang(中山大学物理学院)
发表时间:
2025年6月13日(其中2025年3月1日投稿,2025年4月30日返修)
发表期刊:
Laser & Photonics Reviews(JCR-Q1,IF=9.8)
论文重要图文:
摘要:具备高数值孔径(NA)与大面积的高分辨率超构透镜,是推动集成显示技术发展的关键。然而,色差问题严重限制了其实际应用。尽管多波长消色差设计缓解了这一问题,但成像分辨率低、成像质量下降等挑战仍存。本研究展示了一款RGB消色差超构透镜,实验实现直径410 μm,在数字成像系统中达成0.775 μm的高成像分辨率。针对空间复用导致的成像模糊问题,进一步集成基于神经网络的图像恢复技术,显著提升了成像性能。该成果凸显了高分辨率RGB消色差超构透镜在数字投影仪、虚拟现实(VR)头显、增强现实(AR)眼镜等多样化数字成像领域的应用潜力。
图1. RGB消色差超构透镜与纳米天线的特性。a) 超构透镜结构示意图;b) 正入射下45°线偏振入射光激励时,纳米天线针对不同偏转角与RGB波长的偏转效率仿真结果(插图为纳米天线结构示意图);c) 超构透镜扫描电子显微镜(SEM)图像(RGB伪色表示对应各波长光的聚焦区域);d) 加工完成的超构透镜光学显微镜图像。
图2. RGB消色差超构透镜在a) 633 nm、b) 550 nm、c) 488 nm波长下的焦平面聚焦性能。第一、二列为x偏振入射光下的仿真与实验点扩散函数(PSF)结果;第三、四列分别为沿x轴与y轴的仿真(实线)与实验(虚线)调制传递函数(MTF)结果。
图3. RGB消色差超构透镜在a) 633 nm、b) 550 nm、c) 488 nm波长下的成像分辨率表征。第一列为定制RGB投影仪投射的真实图像;第二列为超构透镜采集的图像;第三列为对比度增强图像。成像条纹宽度为0.775 μm,对应1951 USAF分辨率测试图的第9组第3号元素。比例尺:2 μm。
图4. 用于超构透镜图像恢复的训练神经网络示意图。彩色真实图像被分解为三个单色通道,并通过超构透镜传播。
图5. a) 采集的单色图像与对应的恢复彩色结果(第一至第三列从左到右依次为:真实图像、超构透镜采集图像、恢复图像);b) 基于本超构透镜的大视场(FOV)VR显示设备概念示意图。
论文快览:
解决的问题:
高分辨率、高数值孔径(NA)的超构透镜是集成显示技术的核心,但传统超构透镜因波长依赖的相位色散引入色像差,限制其在多波长成像中的应用;现有多波长(RGB)消色差设计虽缓解色像差,但受限于元原子结构复杂度与空间复用带来的串扰,存在高NA下成像分辨率低(仅达1.95μm)、质量退化的瓶颈,难以满足数字投影、VR/AR等高精度成像需求。
提出的方法:
设计偏振无关的RGB消色差超构透镜,采用双圆柱纳米柱组成的二聚体纳米天线(“超光栅”),通过一致纳米柱几何简化设计与制造;采用大尺寸孔径分割(24等分区)实现空间复用,平衡聚焦效率与成像性能;针对空间复用导致的模糊问题,集成基于U-net架构的神经网络,通过分离RGB通道训练与多尺度结构相似性损失(MS-SSIM)结合L1损失优化,实现图像恢复。
实现的效果:
实验制备直径410μm、NA 0.97的超构透镜,成像分辨率达0.775μm(对应USAF 1951分辨率测试卡9组3元);红、绿、蓝光聚焦效率分别为21.93%、7.07%、7.19%;结合神经网络后,恢复图像的峰值信噪比(PSNR)与结构相似性(SSIM)显著提升,成像质量接近真实图像。
创新点分析:
首次通过结构简单的二聚体纳米天线实现偏振无关的高NA(0.97)RGB消色差超构透镜,突破传统复杂元原子设计的制造限制;采用大尺寸孔径分割策略,在保证聚焦效率(单波长33.3%理论上限)的同时,实现当前最高成像分辨率(0.775μm);创新性集成神经网络图像恢复技术,解决空间复用导致的模糊问题,为高NA超构透镜在VR/AR等场景的应用提供了“硬件-算法”协同优化的新范式。
- P. Zhang, L. Yan, H. Liang, J. Zhang, J. Li, X.-H. Wang, RGB Achromatic Metalens for Neural Network-Enhanced High Resolution Digital Imaging. Laser Photonics Rev 2025, e00460.
DOI: https://doi.org/10.1002/lpor.202500460https://doi.org/10.1126/sciadv.adv5190
免责声明:
我们专注于超表面领域的最新研究动态、学术成果和技术应用分享。所有发布的内容和图片,均已标明来源,且仅供个人学术学习和知识积累使用,不得用于商业目的。如您发现任何版权或相关问题,欢迎通过邮箱 metasurface@126.com 联系我们,我们将尽快处理并协调相关事宜。