LLMs之BELLE:源码解读(merge_tokenizers.py文件)扩充词表—训练和合并两个不同的SentencePiece分词模型—使用SentencePiece库来训练一个名为belle的

使用SentencePiece合并与训练BPE分词器:BELLE模型
这篇博客介绍了如何通过merge_tokenizers.py源码,使用SentencePiece库训练一个名为belle的BPE分词器,词表大小25000,覆盖率99.95%,并合并两个现有分词器的词汇表,最后保存为新的分词器模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值