前面还有个没讲完的。
怎么形象地理解对偶空间(Dual Vector Space)? - 知乎
里面提到了:
重点看后面这个公式:
<f,Av> = <A*f,v>
这是不是和伴随很像:
其实就是一样的。
伴随其实是W*-->V, W*是W上面的线性泛函,只不过刚好空间都是泛函空间,所以W*和W默认是一样的。
这就是转置和对偶之间的联系。
正交矩阵或者酉矩阵只是去做坐标变换(从点积的角度去考虑)
完美!
前面还有个没讲完的。
怎么形象地理解对偶空间(Dual Vector Space)? - 知乎
里面提到了:
重点看后面这个公式:
<f,Av> = <A*f,v>
这是不是和伴随很像:
其实就是一样的。
伴随其实是W*-->V, W*是W上面的线性泛函,只不过刚好空间都是泛函空间,所以W*和W默认是一样的。
这就是转置和对偶之间的联系。
正交矩阵或者酉矩阵只是去做坐标变换(从点积的角度去考虑)
完美!