伴随和对偶空间

本文探讨了对偶空间的概念,通过公式<f,Av>=<A*f,v>解释了对偶空间与伴随的关系,并指出在特定情况下两者的等价性。此外,还讨论了正交矩阵或酉矩阵在坐标变换中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面还有个没讲完的。

怎么形象地理解对偶空间(Dual Vector Space)? - 知乎

里面提到了:

 重点看后面这个公式:

<f,Av> = <A*f,v>

这是不是和伴随很像:

 其实就是一样的。

 伴随其实是W*-->V,  W*是W上面的线性泛函,只不过刚好空间都是泛函空间,所以W*和W默认是一样的。

这就是转置和对偶之间的联系。

正交矩阵或者酉矩阵只是去做坐标变换(从点积的角度去考虑)

完美!

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yxriyin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值