<think>我们正在使用Unity2D,结合OpenCV和Dlib实现人脸识别,并模拟面部消瘦、眼窝凹陷和黑眼圈效果。以下是步骤和关键点:
1. **环境准备**:
- 在Unity中导入OpenCV for Unity插件(如OpenCV for Unity Asset Store包)和Dlib的Unity封装(如DlibFaceLandmarkDetector)。
- 确保插件兼容Unity2D项目。注意:虽然我们做2D效果,但人脸识别和特征点检测是处理来自摄像头的图像(可以视为2D纹理)。
2. **人脸检测与特征点提取**:
- 使用OpenCV进行人脸检测(返回人脸矩形区域)。
- 然后,在检测到的人脸区域内使用Dlib的68点人脸特征点检测模型(shape_predictor_68_face_landmarks.dat)获取面部特征点。
3. **实现面部消瘦效果**:
- 思路:通过移动特征点来模拟面部消瘦。例如,将脸颊两侧的特征点向内收缩。
- 具体操作:选择脸颊两侧的特征点(例如,索引为1到16的点,但具体要看68点模型的分布,通常两侧是17-26和22-26等,需要查阅68点模型对应位置),然后向脸部中心移动一定比例。
- 实现:将选中的特征点的x坐标向脸部中心线(例如,鼻梁的中心)靠近。可以使用插值方法,使得移动效果自然。
4. **眼窝凹陷效果**:
- 思路:在眼睛周围的特征点(通常是上眼皮)向下移动,同时可能配合颜色变化(阴影)来增强凹陷感。
- 具体操作:选择上眼皮的特征点(例如,左眼为37-42,右眼为43-48,注意索引可能因模型而异),将这些点向下(y坐标增加)移动一小段距离。
- 同时,在移动后的区域绘制阴影(颜色加深)来模拟凹陷的阴影效果。
5. **黑眼圈效果**:
- 思路:在眼睛下方区域绘制深色(如青黑色)的椭圆形区域,并做模糊处理使其自然。
- 具体操作:根据下眼睑的特征点(例如,左眼下方的点41-42和47-48之间的区域,右眼类似)确定一个区域,然后在此区域绘制深色。可以使用OpenCV的绘图函数(如`cv2.fillPoly`)填充颜色,然后使用高斯模糊使边缘过渡自然。
6. **整体流程**:
- 从摄像头获取图像(或使用一张图片)。
- 使用OpenCV检测人脸区域。
- 使用Dlib在检测到的人脸区域检测68个特征点。
- 根据需求修改特征点位置(消瘦、眼窝凹陷)并在图像上绘制黑眼圈效果。
- 将处理后的图像显示在Unity的UI上(如RawImage)。
7. **注意事项**:
- 性能:实时处理可能对性能有要求,需要优化(例如降低图像分辨率,但不要过低以免影响特征点检测)。
- 效果自然:特征点的移动需要根据人脸的实际比例进行,避免过度变形。可以使用仿射变换或三角剖分(Delaunay Triangulation)来保证变形时皮肤的纹理自然。
8. **代码结构示例**(伪代码):
```csharp
using OpenCVForUnity.CoreModule;
using OpenCVForUnity.ImgprocModule;
using OpenCVForUnity.UnityUtils;
using DlibFaceLandmarkDetector; // 假设有这样一个命名空间
public class FaceEffect : MonoBehaviour
{
public RawImage display;
private WebCamTexture webCamTexture;
private FaceLandmarkDetector landmarkDetector;
private CascadeClassifier faceCascade;
void Start()
{
// 初始化摄像头
webCamTexture = new WebCamTexture();
display.texture = webCamTexture;
webCamTexture.Play();
// 加载OpenCV人脸检测器(haar级联分类器)
faceCascade = new CascadeClassifier(Application.dataPath + "haarcascade_frontalface_default.xml");
// 加载Dlib特征点检测器
landmarkDetector = new FaceLandmarkDetector(Application.dataPath + "shape_predictor_68_face_landmarks.dat");
}
void Update()
{
// 从WebCamTexture获取图像
Mat rgbaMat = new Mat(webCamTexture.height, webCamTexture.width, CvType.CV_8UC4);
Utils.webCamTextureToMat(webCamTexture, rgbaMat);
// 转换为灰度图进行人脸检测
Mat gray = new Mat();
Imgproc.cvtColor(rgbaMat, gray, Imgproc.COLOR_RGBA2GRAY);
// 人脸检测
MatOfRect faces = new MatOfRect();
faceCascade.detectMultiScale(gray, faces);
// 遍历检测到的人脸
foreach (Rect face in faces.toArray())
{
// 使用Dlib检测特征点(注意:Dlib的检测需要将Rect转换为Dlib的矩形)
List<Vector2> landmarks = landmarkDetector.Detect(rgbaMat, face);
// 面部消瘦:移动脸颊两侧的点
ApplyThinFaceEffect(ref landmarks);
// 眼窝凹陷:移动上眼皮的点
ApplySunkenEyesEffect(ref landmarks);
// 绘制特征点(可选,用于调试)
// DrawLandmarks(rgbaMat, landmarks);
// 黑眼圈效果:在眼睛下方绘制深色区域
ApplyDarkCirclesEffect(rgbaMat, landmarks);
}
// 显示处理后的图像
Texture2D texture = new Texture2D(rgbaMat.cols(), rgbaMat.rows(), TextureFormat.RGBA32, false);
Utils.matToTexture2D(rgbaMat, texture);
display.texture = texture;
}
void ApplyThinFaceEffect(ref List<Vector2> landmarks)
{
// 假设脸颊两侧的点索引为1到16(具体需要根据68点模型调整)
// 实际68点模型中,脸颊两侧的点大约是2,3,4,5,6,7,8,9,10,11,12,13,14,15(左脸)和17,18,19,20,21,22,23,24,25,26,27,28(右脸)?这里需要根据模型确定
// 这里仅作示例,我们需要知道具体的68点索引分布
// 例如,我们取左侧脸颊点(索引1到16中靠脸颊的部分)和右侧对称点
// 实际68点模型:左脸轮廓点:0-16(共17个点),右脸对称但模型没有直接给出,需要对称处理?实际上68点模型是连续的,从0(下巴开始)到16(左下巴角),然后17(左颧骨)等。
// 更准确:我们通常取左右两侧中间位置的点(比如点3和点13)向中心移动。
// 这里简化:取左右两侧的点(比如左侧点2,3,4,5,6,7,8和右侧的10,11,12,13,14,15,16)注意:68点模型索引从0开始,下巴0,左脸轮廓1-16(逆时针)?具体需要查。
// 根据68点模型:点0-16是下颌线(下巴到左太阳穴再到右太阳穴?),实际上0是下巴中点,1是下巴左,2是下巴右,然后3是左下颌角,4右下颌角,然后5-16是左右脸颊轮廓?其实不是,68点模型有标准分布图。
// 标准68点模型:
// 0-16:下巴轮廓(17个点)
// 17-21:左眉毛
// 22-26:右眉毛
// 27-35:鼻梁和鼻尖
// 36-41:左眼
// 42-47:右眼
// 48-67:嘴巴
// 因此,对于脸颊,我们通常使用下颌轮廓点(0-16)来调整脸型。
// 我们取整个下颌轮廓(0-16)的点,然后向中心移动(除了下巴中点0,因为移动下巴中点会导致下巴变形,我们可能不想动它)
// 移动方式:将每个点的x坐标向脸部中心线(即点27,鼻尖上方,但鼻尖是33?)移动。中心线x坐标可以用点27(鼻梁上点)的x坐标。
// 获取中心线x坐标(这里用点30,即鼻尖下方点,但点27是鼻梁上点,索引27)
float centerX = landmarks[27].x;
// 收缩因子(0.9表示向中心移动10%)
float factor = 0.9f;
// 遍历下颌点(索引0到16)
for (int i = 1; i <= 16; i++) // 跳过0(下巴中点)或者不跳过?这里我们跳过0,因为移动下巴中点会改变下巴位置
{
// 只移动左右两侧,不移动正下方的点(0,8,16?)
// 实际上点0是下巴中点,8是左脸颊最宽处?16是右脸颊最宽处?具体看分布。
// 我们移动除了0和8、16以外的点?或者全部移动。
// 计算当前点到中心线的距离
float distanceToCenter = landmarks[i].x - centerX;
// 向中心移动(乘以一个因子,使得距离减小)
float newX = centerX + distanceToCenter * factor;
landmarks[i] = new Vector2(newX, landmarks[i].y);
}
}
void ApplySunkenEyesEffect(ref List<Vector2> landmarks)
{
// 左眼上眼皮:点37,38,39,40,41,42(实际上36-41是左眼,其中上眼皮是37,38,39,40?)
// 标准:36为左眼左角,37为上眼皮中左,38为上眼皮中,39为上眼皮中右,40为右眼右角(内眼角?),41为下眼皮中右,42为下眼皮中左?不对,标准68点:
// 左眼:36,37,38,39,40,41(顺时针,36是左眼角,37是上眼皮中间偏左,38是上眼皮中间偏右,39是右眼角,40是下眼皮中间偏右,41是下眼皮中间偏左)
// 我们想要上眼皮下沉,所以移动上眼皮的点(37,38)向下(y坐标增加)
// 注意:移动的距离不能太大,否则不自然。
// 移动上眼皮的点(37,38)和(43,44)为右眼的上眼皮中间点(右眼对应42,43,44,45,46,47)
// 左眼上眼皮中间点:37和38
// 右眼上眼皮中间点:43和44
float dropAmount = 5.0f; // 下移的像素数,根据图像大小调整
// 左眼上眼皮中间两个点(37,38)
landmarks[37] = new Vector2(landmarks[37].x, landmarks[37].y + dropAmount);
landmarks[38] = new Vector2(landmarks[38].x, landmarks[38].y + dropAmount);
// 右眼上眼皮中间两个点(43,44)
landmarks[43] = new Vector2(landmarks[43].x, landmarks[43].y + dropAmount);
landmarks[44] = new Vector2(landmarks[44].x, landmarks[44].y + dropAmount);
}
void ApplyDarkCirclesEffect(Mat rgbaMat, List<Vector2> landmarks)
{
// 在眼睛下方绘制深色区域(例如,左眼下方:点41,42和40,41之间的区域,但实际我们可以在下眼皮下方画一个椭圆)
// 左眼下方区域:我们可以用点41(左眼下眼皮中间偏左)和点40(左眼下眼皮中间偏右)以及点29(鼻梁点)和点31(鼻翼)等,但为了简单,我们使用下眼皮点以及向下扩展的区域。
// 绘制两个椭圆,一个在左眼下方,一个在右眼下方。
// 左眼下方椭圆的中心:在左眼下眼皮中间点(点41和点40的中点)下方一点
Point leftEyeBottomCenter = new Point(
(landmarks[40].x + landmarks[41].x) / 2,
(landmarks[40].y + landmarks[41].y) / 2 + 5 // 再往下5像素
);
// 椭圆大小:宽度为左眼宽度的一半,高度为3-5像素
Size leftEllipseSize = new Size((landmarks[39].x - landmarks[36].x) / 4, 3);
// 右眼类似
Point rightEyeBottomCenter = new Point(
(landmarks[46].x + landmarks[47].x) / 2,
(landmarks[46].y + landmarks[47].y) / 2 + 5
);
Size rightEllipseSize = new Size((landmarks[45].x - landmarks[42].x) / 4, 3);
// 绘制椭圆(使用填充)
Scalar darkColor = new Scalar(0, 0, 0, 100); // RGBA,黑色带透明度
Imgproc.ellipse(rgbaMat, leftEyeBottomCenter, leftEllipseSize, 0, 0, 360, darkColor, -1);
Imgproc.ellipse(rgbaMat, rightEyeBottomCenter, rightEllipseSize, 0, 0, 360, darkColor, -1);
// 模糊处理,使边缘自然
Mat blurred = new Mat();
Imgproc.GaussianBlur(rgbaMat, blurred, new Size(15, 15), 0);
blurred.copyTo(rgbaMat);
}
}
```
注意:以上代码是概念性的,实际使用中需要根据68点模型的具体索引调整。另外,特征点移动和效果绘制需要调试以达到自然效果。
9. **性能优化**:
- 可以降低图像分辨率来提高处理速度。
- 也可以考虑使用多线程处理,但Unity中需要注意线程安全。
10. **效果调整**:
- 上述效果参数(如移动距离、椭圆大小、颜色等)需要根据实际测试调整。
11. **引用**:
- 我们使用了OpenCV for Unity插件进行人脸检测和图像处理[^1]。
- 使用了Dlib的68点模型进行特征点检测,这是人脸识别中常用的方法[^2]。
- 关于人脸特征点的具体分布,可以参考Dlib的官方文档。
12. **注意事项**:
- 隐私保护:处理人脸图像时,确保遵守隐私法规。
- 效果自然:移动特征点可能会造成不自然的效果,因此需要仔细调整参数。
以上是一个基本的实现方案,具体实现中可能会遇到各种问题,需要根据实际情况调整。
§§相关问题§§
1. 如何在Unity中降低摄像头图像的分辨率以提高处理速度?
2. 如何优化Dlib特征点检测的性能?
3. 除了移动特征点,还有哪些方法可以实现更自然的面部变形效果?</think>### 在Unity2D中结合OpenCV和Dlib实现人脸识别与面部特效
以下是实现面部消瘦、眼窝凹陷及黑眼圈特效的完整方案,分为环境配置、核心步骤和代码实现三部分:
---
#### **1. 环境准备**
- **OpenCV for Unity**:处理基础人脸检测和图像处理
```bash
# 从Asset Store或GitCode获取
https://gitcode.com/Open-source-documentation-tutorial/cb266
```
- **Dlib FaceLandmark Detector**:精准获取68个人脸特征点
```bash
# 从GitHub获取Unity封装版
https://github.com/keijiro/DlibFaceLandmarkDetector
```
- **系统要求**:Unity 2019.4+,支持Burst编译器以优化性能
---
#### **2. 核心实现步骤**
##### **(1) 人脸检测与特征点定位**
```csharp
// 初始化检测器
FaceLandmarkDetector landmarkDetector = new FaceLandmarkDetector(shapePredictorPath);
Mat rgbaMat = new Mat(webCamTexture.height, webCamTexture.width, CvType.CV_8UC4);
Utils.webCamTextureToMat(webCamTexture, rgbaMat);
// 检测人脸和特征点
List<Rect> faces = faceCascade.detectMultiScale(grayMat);
foreach (Rect face in faces) {
List<Vector2> landmarks = landmarkDetector.Detect(rgbaMat, face);
// 68个关键点索引参考:
// 下巴(0-16), 左眉(17-21), 右眉(22-26), 鼻梁(27-35)
// 左眼(36-41), 右眼(42-47), 嘴唇(48-67) [^3]
}
```
##### **(2) 面部消瘦效果**
```csharp
void ApplyThinFaceEffect(ref List<Vector2> landmarks) {
// 收缩脸颊关键点(索引1-15为下颌轮廓)
float shrinkFactor = 0.85f;
Vector2 faceCenter = (landmarks[2] + landmarks[14]) / 2; // 左右颧骨中点
for (int i = 1; i <= 15; i++) {
Vector2 dir = faceCenter - landmarks[i];
landmarks[i] = landmarks[i] + dir * (1 - shrinkFactor);
}
}
```
> 原理:将下颌轮廓点向脸部中心收缩,模拟骨骼突出效果[^1]
##### **(3) 眼窝凹陷效果**
```csharp
void ApplySunkenEyes(Mat img, List<Vector2> landmarks) {
// 获取左眼区域(索引36-41)
Point[] leftEyePoints = landmarks.GetRange(36, 6).ToPoints();
// 创建凹陷遮罩
Mat mask = new Mat(img.rows(), img.cols(), CvType.CV_8UC1, Scalar.all(0));
Imgproc.fillConvexPoly(mask, leftEyePoints, new Scalar(255));
// 应用深色渐变
Mat darkenMat = new Mat();
Core.addWeighted(img, 0.7, Scalar.all(50), 0.3, 0, darkenMat);
darkenMat.copyTo(img, mask);
}
```
> 技巧:使用透明度混合加深眼窝颜色,配合高斯模糊实现自然过渡
##### **(4) 黑眼圈特效**
```csharp
void ApplyDarkCircles(Mat img, List<Vector2> landmarks) {
// 在下眼睑下方绘制椭圆(左眼索引41-42区域)
Point center = new Point(
(landmarks[41].x + landmarks[40].x) / 2,
(landmarks[41].y + landmarks[40].y) / 2 + 10
);
Size axes = new Size(15, 8); // 椭圆轴长
Imgproc.ellipse(img, center, axes, 0, 0, 360,
new Scalar(60, 60, 120, 180), // 青黑色RGBA
-1); // 填充模式
// 边缘模糊处理
Imgproc.GaussianBlur(img, img, new Size(15, 15), 0);
}
```
---
#### **3. 性能优化建议**
1. **异步处理**:将OpenCV/Dlib计算放在`Thread`中,避免主线程阻塞
2. **分辨率控制**:将摄像头输入降至480p(SD)处理
3. **区域更新**:只重绘面部ROI区域而非全画面
4. **缓存机制**:对连续帧复用特征点检测结果
---
#### **4. 效果增强方案**
| 效果 | 实现方法 | 关键API |
|------|----------|---------|
| **动态消瘦** | 根据时间轴调整收缩系数 | `Mathf.Lerp()` |
| **泪沟加深** | 在鼻翼-眼袋区域添加深色线条 | `Imgproc.line()` |
| **骨骼阴影** | 在颧骨下方绘制三角形阴影 | `Imgproc.fillPoly()` |
> **注意事项**:
> - 特征点移动幅度需限制在面部宽度的5-10%避免失真
> - 人眼检测可参考Dlib的眨眼检测算法防止特效误触发[^2]
> - 隐私合规:运行时需明确提示用户开启摄像头权限
---