【传知代码】命名实体识别(论文复现)

前言:命名实体识别,作为自然语言处理(NLP)领域中的一项关键技术,近年来受到了广泛的关注和研究。它旨在从文本中自动识别和分类出具有特定意义的实体,如人名、地名、组织名、日期、时间等。这些实体不仅是文本信息的重要组成部分,更是许多自然语言处理任务的关键输入,如关系抽取、情感分析、问答系统等,想象一下,当我们阅读一篇新闻报道时,如果能够自动识别和标注出其中的人名、地名、事件等关键信息,那么我们就能更加迅速地把握文章的核心内容,甚至可以对这些信息进行进一步的分析和挖掘。

本文所涉及所有资源均在传知代码平台可获取

目录

概述

演示效果

核心代码

写在最后


概述

        在自然语言处理(NLP)领域,实体识别任务(Named Entity Recognition,简称NER)被视为一个核心任务,其主要目的是从文本资料中进行实体的识别和分类命名。命名实体一般都是由专有名词组成的,例如人名,地名和组织名。

下面的图示展示了一个基础的实体提取任务,该任务从句子中提取了阿里巴巴(组织名)、马云(人名)以及杭州(地名)这三个不同的实体:

NER 的主要目标是找到文本中有意义的实体,并将其归类到预定义的类别中。以下是一些常见的类别:

人名(Person):例如“乔布斯”、“马云”。
地名(Location):例如“纽约”、“长城”。
组织名(Organization):例如“微软”、“联合国”。

命名实体识别是自然语言处理领域的一个重要的任务,它在很多具体任务上有着自己的应用:

信息抽取:从大量文档中自动提取有价值的信息。
问答系统:帮助系统更准确地理解问题并返回相关答案。
文本摘要:在生成文本摘要时识别出关键实体以保留重要信息。
推荐系统:通过识别用户偏好的实体来提供个性化推荐。

本文的工作启发于另一篇 地址 ,具体如下图所示:

接下来对实现的技术方法进行一个简单的介绍:

BERT编码:首先,将输入的中文文本通过预训练的 BERT 模型进行编码,生成每个字的上下文表示。BERT模型通过其双向Transformer架构,能够捕捉文本中每个字与其前后文之间的复杂关系,从而生成高质量的字级别表示,有助于后续的特征提取和实体识别。

BiLSTM特征提取:接下来,将 BERT 输出的特征向量输入到双向长短时记忆网络

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亦世凡华、

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值