前言:命名实体识别,作为自然语言处理(NLP)领域中的一项关键技术,近年来受到了广泛的关注和研究。它旨在从文本中自动识别和分类出具有特定意义的实体,如人名、地名、组织名、日期、时间等。这些实体不仅是文本信息的重要组成部分,更是许多自然语言处理任务的关键输入,如关系抽取、情感分析、问答系统等,想象一下,当我们阅读一篇新闻报道时,如果能够自动识别和标注出其中的人名、地名、事件等关键信息,那么我们就能更加迅速地把握文章的核心内容,甚至可以对这些信息进行进一步的分析和挖掘。
本文所涉及所有资源均在传知代码平台可获取
目录
概述
在自然语言处理(NLP)领域,实体识别任务(Named Entity Recognition,简称NER)被视为一个核心任务,其主要目的是从文本资料中进行实体的识别和分类命名。命名实体一般都是由专有名词组成的,例如人名,地名和组织名。
下面的图示展示了一个基础的实体提取任务,该任务从句子中提取了阿里巴巴(组织名)、马云(人名)以及杭州(地名)这三个不同的实体:
NER 的主要目标是找到文本中有意义的实体,并将其归类到预定义的类别中。以下是一些常见的类别:
人名(Person):例如“乔布斯”、“马云”。
地名(Location):例如“纽约”、“长城”。
组织名(Organization):例如“微软”、“联合国”。
命名实体识别是自然语言处理领域的一个重要的任务,它在很多具体任务上有着自己的应用:
信息抽取:从大量文档中自动提取有价值的信息。
问答系统:帮助系统更准确地理解问题并返回相关答案。
文本摘要:在生成文本摘要时识别出关键实体以保留重要信息。
推荐系统:通过识别用户偏好的实体来提供个性化推荐。
本文的工作启发于另一篇 地址 ,具体如下图所示:
接下来对实现的技术方法进行一个简单的介绍:
BERT编码:首先,将输入的中文文本通过预训练的 BERT 模型进行编码,生成每个字的上下文表示。BERT模型通过其双向Transformer架构,能够捕捉文本中每个字与其前后文之间的复杂关系,从而生成高质量的字级别表示,有助于后续的特征提取和实体识别。
BiLSTM特征提取:接下来,将 BERT 输出的特征向量输入到双向长短时记忆网络