POJ 3030 Antenna Placement

本文详细解析了POJ3030天线放置问题,通过最小边覆盖理论解决覆盖所有兴趣点的最优化问题,介绍了匈牙利算法实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

POJ 3030 Antenna Placement

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.
在这里插入图片描述
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set [′∗′,′o′]['*','o'][,o]. A ‘*’-character symbolises a point of interest, whereas a ‘o’-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all ‘*’-entries in the scenario’s matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

这题考了最小边覆盖,最小边覆盖数量=顶点数-最大匹配数,这是一条定理,上面的图可以看到最少需要8条边,最大匹配数为4,顶点数恰为12,AC代码如下:

#include<cstdio>
#include<vector>
using namespace std;
typedef long long ll;
const int N=605;
vector<int>g[N];
int match[N],vis[N],num[N][N];
int t,n,m,cnt;
int step[4][2]={1,0,0,1,0,-1,-1,0};
char s[N][N];
void bfs(int x,int y){
    for(int i=0;i<4;i++){
        int xx=x+step[i][0];
        int yy=y+step[i][1];
        if(xx>=0 && xx<n && yy>=0 && yy<m && s[xx][yy]=='*'){
            g[num[x][y]].push_back(num[xx][yy]);
        }
    }
}

int found(int u){
    for(int i=0;i<g[u].size();i++){
        int v=g[u][i];
        if(!vis[v]){
            vis[v]=1;
            if(!match[v] || (found(match[v]))){
                match[v]=u;
                return 1;
            }
        }
    }
    return 0;
}

void hungary(){
    int ans=0;
    fill(match,match+N,0);
    for(int i=1;i<cnt;i++){
        fill(vis,vis+N,0);
        if(found(i)) ans++;
    }
    printf("%d\n",cnt-1-ans/2);
}

int main(){
    scanf("%d",&t);
    while(t--){
        cnt=1;
        scanf("%d%d",&n,&m);
        fill(num[0],num[0]+N*N,0);
        for(int i=0;i<N;i++) g[i].clear();
        for(int i=0;i<n;i++){
            scanf("%s",&s[i]);
            for(int j=0;j<m;j++){
                if(s[i][j]=='*') num[i][j]=cnt++;
            }
        }
        for(int i=0;i<n;i++){
            for(int j=0;j<m;j++){
                if(s[i][j]=='*') bfs(i,j);
            }
        }
        hungary();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旺 崽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值