导出 CDH 中各组件(HDFS、Hive、Impala、Kafka、Kudu、YARN和Zookeeper)指标到 Prometheus


前言

本教程介绍了如何提取大数据集群中不同组件的指标信息,涵盖了HDFS、Hive、Impala、Kafka、Kudu、YARN和Zookeeper等组件,通过配置环境变量以启用JMX监控,并展示了具体操作步骤和配置方法。


一、提取准备

1. 下载jmx

mkdir -p /opt/soft/jmx/config
wget https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.18.0/jmx_prometheus_javaagent-0.18.0.jar -P /opt/soft/jmx/config/

2. 创建规则文件

echo "lowercaseOutputName: true
lowercaseOutputLabelNames: true
rules:
    - pattern: '.*'" > /opt/soft/jmx/config/common_conf.yml

二、HDFS指标提取

1. namenode指标提取

在Cloudera Manager的UI页面打开HDFS集群,点击配置,找到NameNode 环境高级配置代码段(安全阀),添加如下配置:

HADOOP_NAMENODE_OPTS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.local.only=false -Dcom.sun.management.jmxremote.port=2870 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=10870:/opt/soft/jmx/config/common_conf.yml

2. datanode指标提取

在Cloudera Manager的UI页面打开HDFS集群,点击配置,找到DataNode 环境高级配置代码段(安全阀),添加如下配置:

HADOOP_DATANODE_OPTS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.local.only=false -Dcom.sun.management.jmxremote.port=2864 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=10864:/opt/soft/jmx/config/common_conf.yml

配置之后需要重启HDFS服务使配置生效。


二、Hive指标提取

1. Hive Metastore Server 指标提取

在Cloudera Manager的UI页面打开Hive集群,点击配置,找到Hive Metastore Server 环境高级配置代码段(安全阀),添加如下配置:

HADOOP_OPTS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.port=2083 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=10083:/opt/soft/jmx/config/common_conf.yml

2. HiveServer2 指标提取

在Cloudera Manager的UI页面打开Hive集群,点击配置,找到HiveServer2 环境高级配置代码段(安全阀),添加如下配置:

HADOOP_OPTS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.port=2002 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=11002:/opt/soft/jmx/config/common_conf.yml

配置之后需要重启Hive服务使配置生效。


三、Impala 指标提取

1. Impala Catalog Server 指标提取

在Cloudera Manager的UI页面打开Impala集群,点击配置,找到Impala Catalog Server 环境高级配置代码段(安全阀),添加如下配置:

JAVA_TOOL_OPTIONS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.port=2020 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=26020:/opt/soft/jmx/config/common_conf.yml

2. Impala Daemon 指标提取

在Cloudera Manager的UI页面打开Impala集群,点击配置,找到Impala Daemon 环境高级配置代码段(安全阀),添加如下配置:

JAVA_TOOL_OPTIONS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.port=2000 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=26000:/opt/soft/jmx/config/common_conf.yml

配置之后需要重启Impala服务使配置生效。

参考链接:https://cwiki.apache.org/confluence/display/IMPALA/How+to+do+JVM+Profiling+for+Impala


四、Kafka 指标提取

1. Kafka Broker 指标提取

在Cloudera Manager的UI页面打开Kafka集群,点击配置,找到Kafka Broker 环境高级配置代码段(安全阀),添加如下配置:

KAFKA_JMX_OPTS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.port=2092 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=10092:/opt/soft/jmx/config/common_conf.yml

2. Kafka MirrorMaker 指标提取

在Cloudera Manager的UI页面打开Kafka集群,点击配置,找到Kafka MirrorMaker 环境高级配置代码段(安全阀),添加如下配置:

KAFKA_JMX_OPTS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.port=2192 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=20092:/opt/soft/jmx/config/common_conf.yml

配置之后需要重启Kafka服务使配置生效。

参考链接:https://docs.confluent.io/platform/current/kafka/monitoring.html


五、KUDU指标提取

1. Tablet Server 指标提取

1.1 下载和解压

wget https://github.com/leeeizhang/Prometheus-Kudu-Exporter/releases/download/v0.2.0/prometheus-kudu-exporter-binary-0.2.0.tar.gz -P /tmp
tar -zxvf /tmp/prometheus-kudu-exporter-binary-0.2.0.tar.gz -C /opt/soft/jmx/config/

1.2 修改配置文件

vim /opt/soft/jmx/config/prometheus-kudu-exporter/conf/kudu-exporter.yml

内容如下所示。

# Fetcher配置
# Kudu服务器的端口应该是8051,Kudu平板服务器应该是8050
prom.kudu.fetcher.classname: io.prometheus.kudu.fetcher.KuduMetricRestFetcher
prom.kudu.fetcher.kudu-nodes: [ host_ip:8050 ]
prom.kudu.fetcher.interval: 10000

#单机报表配置
#启动后请访问http://localhost:9055/metrics查看kudu-export状态
prom.kudu.reporter.classname: io.prometheus.kudu.reporter.KuduMetricLocalReporter
prom.kudu.reporter.local.port: 9050

# Push-Gateway 报表配置
# Push-Gateway应该在运行kudu-export之前安装
#prom.kudu.reporter.classname: io.prometheus.kudu.reporter.KuduMetricPushGatewayReporter
#prom.kudu.reporter.pushgateway.host: 127.0.0.1:9091
#prom.kudu.reporter.pushgateway.interval: 10000

1.3 启动和停止

1.3.1 启动
nohup /opt/soft/jmx/config/prometheus-kudu-exporter/bin/kudu-exporter.sh >/tmp/kudu-exporter.log 2>&1 &
1.3.2 停止

查看进程PID,然后停止对应进程。

ps -ef | grep prometheus-kudu-exporter
kill <PID>
1.3.3 测试
curl http://127.0.0.1:9050/metrics

2. Master 指标提取

2.1 创建配置文件和启动脚本

cd /opt/soft/jmx/config/prometheus-kudu-exporter/conf
cp kudu-exporter.yml kudu-exporter-master.yml
cd /opt/soft/jmx/config/prometheus-kudu-exporter/bin
cp kudu-exporter.sh kudu-exporter-master.sh

2.2 修改配置文件

cd /opt/soft/jmx/config/prometheus-kudu-exporter/conf
vim kudu-exporter-master.yml

内容如下所示。

# Fetcher配置
# Kudu服务器的端口应该是8051,Kudu平板服务器应该是8050
prom.kudu.fetcher.classname: io.prometheus.kudu.fetcher.KuduMetricRestFetcher
prom.kudu.fetcher.kudu-nodes: [ host_ip:8051 ]
prom.kudu.fetcher.interval: 10000

#单机报表配置
#启动后请访问http://localhost:9055/metrics查看kudu-export状态
prom.kudu.reporter.classname: io.prometheus.kudu.reporter.KuduMetricLocalReporter
prom.kudu.reporter.local.port: 9051

# Push-Gateway 报表配置
# Push-Gateway应该在运行kudu-export之前安装
#prom.kudu.reporter.classname: io.prometheus.kudu.reporter.KuduMetricPushGatewayReporter
#prom.kudu.reporter.pushgateway.host: 127.0.0.1:9091
#prom.kudu.reporter.pushgateway.interval: 10000

2.3 修改启动脚本

cd /opt/soft/jmx/config/prometheus-kudu-exporter/bin
vim kudu-exporter-master.sh

把启动脚本中PROMETHEUS_KUDU_EXPORTER_CONF="$PROMETHEUS_KUDU_EXPORTER_CONF_DIR"/kudu-exporter.yml修改为PROMETHEUS_KUDU_EXPORTER_CONF="$PROMETHEUS_KUDU_EXPORTER_CONF_DIR"/kudu-exporter-master.yml

2.4 启动和停止

2.4.1 启动
nohup /opt/soft/jmx/config/prometheus-kudu-exporter/bin/kudu-exporter-master.sh >/tmp/kudu-exporter-master.log 2>&1 &
2.4.2 停止

查看进程PID,然后停止对应进程。

ps -ef | grep prometheus-kudu-exporter
kill <PID>

3. Grafana模版下载

点击下载KUDU指标JSON模版


六、YARN 指标提取

1. ResourceManager 指标提取

在Cloudera Manager的UI页面打开Kafka集群,点击配置,找到ResourceManager 环境高级配置代码段(安全阀),添加如下配置:

YARN_RESOURCEMANAGER_OPTS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.port=2088 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=9088:/opt/soft/jmx/config/common_conf.yml

2. NodeManager 指标提取

在Cloudera Manager的UI页面打开Kafka集群,点击配置,找到NodeManager 环境高级配置代码段(安全阀),添加如下配置:

YARN_NODEMANAGER_OPTS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.port=2042 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=9042:/opt/soft/jmx/config/common_conf.yml

配置之后需要重启YARN服务使配置生效。

参考链接:https://community.cloudera.com/t5/Community-Articles/Enable-JMX-metrics-on-hadoop-using-jmxterm/ta-p/247783


七、Zookeeper 指标提取

1. Server 指标提取

在Cloudera Manager的UI页面打开Kafka集群,点击配置,找到Server 环境高级配置代码段(安全阀),添加如下配置:

ZOOKEEPER_SERVER_OPTS=-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.port=9010 -javaagent:/opt/soft/jmx/config/jmx_prometheus_javaagent-0.18.0.jar=3181:/opt/soft/jmx/config/common_conf.yml

总结

本教程详细介绍了如何使用JMX Prometheus Exporter工具来提取各个大数据组件的指标信息,并将其暴露给Prometheus进行监控。通过学习本教程,您可以轻松设置并收集这些指标数据,并利用可视化工具展示和分析它们。

希望本教程对您有所帮助!如有任何疑问或问题,请随时在评论区留言。感谢阅读!

CDH(Cloudera Distribution of Hadoop)是一种开源的分布式计算框架,它包含了Hadoop、YarnHDFS组件,同时还提供了HiveImpala等工具,可以方便地进行大数据处理分析。 在CDH集群中,YarnHDFSHiveImpala是四个核心组件,运维这些组件需要掌握以下几个方面: 1. Yarn运维 YarnCDH中的资源管理器,它负责管理集群中的资源,并将这些资源分配给运行在集群上的各个应用程序。Yarn的运维涉及到以下几个方面: (1)配置管理:包括Yarn的配置文件、资源管理器的配置、容器管理器的配置等。 (2)集群监控:需要监控Yarn的运行状态、资源使用情况、队列状态等。 (3)任务调度:需要管理Yarn中的作业任务,包括调度作业、监控任务执行、处理任务失败等。 2. HDFS运维 HDFSCDH中的分布式文件系统,它负责存储集群中的数据,并提供高可用、高性能的数据访问服务。HDFS的运维涉及到以下几个方面: (1)配置管理:包括HDFS的配置文件、NameNode的配置、DataNode的配置等。 (2)集群监控:需要监控HDFS的运行状态、数据存储情况、数据访问情况等。 (3)数据管理:需要管理HDFS中的数据,包括上传、下载、删除、修改等操作。 3. Hive运维 HiveCDH中的数据仓库工具,它可以将结构化数据映射到Hadoop中的HDFSMapReduce上进行查询分析。Hive的运维涉及到以下几个方面: (1)配置管理:包括Hive的配置文件、元数据存储配置、查询引擎配置等。 (2)查询优化:需要对Hive中的查询语句进行优化,以提高查询性能。 (3)数据管理:需要管理Hive中的数据,包括创建表、导入数据、备份数据等。 4. Impala运维 ImpalaCDH中的实时查询工具,它可以在Hadoop中实现快速查询分析。Impala的运维涉及到以下几个方面: (1)配置管理:包括Impala的配置文件、元数据存储配置、查询引擎配置等。 (2)查询优化:需要对Impala中的查询语句进行优化,以提高查询性能。 (3)数据管理:需要管理Impala中的数据,包括创建表、导入数据、备份数据等。 总之,CDH集群的运维需要从多个方面进行管理监控,只有全面掌握各个组件的运维方法,才能保证集群的稳定性高可用性。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BigDataMagician

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值