Pyspark 平台的协同过滤推荐算法应用与实现

摘 要: 为解决传统的基于矩阵分解协同过滤推荐算法,在大量数据的情况下,单节点计算速度慢以及特征矩阵稀疏 问题,充分对大数据时代下的 Pyspark 大数据处理平台原理及架构进行研究,并对 ALS 协同过滤算法原理研究与其在 Pyspark 平台上的实现推荐系统应用. 实验结果表明,基于 Pyspark 平台的 ALS 算法,通过调节正则化参数为 0. 01、增加 并行化分块计算的块数、减少隐含语义因子的个数,能使推荐算法的 RMSE 最小,并能更快速精准有效推荐给用户他 们感兴趣的商品.

Spark 是用面向函数式变成语言( Scala) 编写的, 并提供了几个交互式的 API. Pyspark 即是 Spark 开发 者为 python 语言开发者提供的 pythonAPI,与 Spark 相 似,PySpark 的中心数据抽象是一个“弹性分布式数据 集”( RDD) ,它只是一个 Python 对象的集合,图 1 给 出了 Pyspark 与 Spark 的关系示意图. 选择 Pyspark 的 原因是对于熟练 Python 的程序员,Python 自身的轻量 级、简单的优势,结合 Spark 的特点,得到很多程序员 的青睐.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值