SimCSE: Simple Contrastive Learning of Sentence Emb

SimCSE主要解决的是Sentence Embedding的问题,也就是句向量。传统方式中,大部分句向量是通过词向量求和而成(词向量通常是由word2vec等方法训练而成)。显然这样的方法比较简单粗暴,而且直接加和的方式并没有利用到词与词之间的交互信息。取而代之的则是以Bert为基础的各类模型。在Bert中,通过堆叠Transformer encoder,能够捕捉到一个句子中深度双向的词与词之间的信息,并以输出层中的[CLS] token的向量来表示整个句子的向量。(关于Bert的细节问题请移步相关文章)

接下来就来到了我们的主角,SimCSE。正如SimCSE文章摘要所说,这不是一个新的模型,而是一个基于对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值