[论文解读]Ram-EHR:检索增强符合电子健康记录的临床预测Ram-EHR: Retrieval Augmentation Meets Clinical Predictionson Electro

Ram-EHR:检索增强符合电子健康记录的临床预测
 

Ran Xu1, Wenqi Shi21, Yue Yu2, Yuchen Zhuang2, Bowen Jin3
May D. Wang2, Joyce Ho1, Carl Yang1
1 Emory University  2 Georgia Institute of Technology
3 University of Illinois at Urbana Champaign
{ran.xu,joyce.c.ho,j.carlyang}@emory.edu,
{wshi83,yczhuang,yueyu,maywang}@gatech.edu, [email protected] contribution.

摘要

我们推出了 Ram-EHR,这是一种检索增强管道,用于改进电子健康记录 (EHR) 的临床预测。 Ram-EHR首先收集多个知识源,将其转换为文本格式,并使用密集检索来获取与医学概念相关的信息。 该策略解决了与概念的复杂名称相关的困难。 然后,Ram-EHR 增强了与一致性正则化联合训练的本地 EHR 预测模型,以从患者就诊和总结的知识中捕获补充信息。 对两个 EHR 数据集的实验表明 Ram-EHR 相对于之前的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值