Ram-EHR:检索增强符合电子健康记录的临床预测
Ran Xu1, Wenqi Shi21, Yue Yu2, Yuchen Zhuang2, Bowen Jin3
May D. Wang2, Joyce Ho1, Carl Yang1
1 Emory University 2 Georgia Institute of Technology
3 University of Illinois at Urbana Champaign
{ran.xu,joyce.c.ho,j.carlyang}@emory.edu,
{wshi83,yczhuang,yueyu,maywang}@gatech.edu, [email protected] contribution.
摘要
我们推出了 Ram-EHR,这是一种检索增强管道,用于改进电子健康记录 (EHR) 的临床预测。 Ram-EHR首先收集多个知识源,将其转换为文本格式,并使用密集检索来获取与医学概念相关的信息。 该策略解决了与概念的复杂名称相关的困难。 然后,Ram-EHR 增强了与一致性正则化联合训练的本地 EHR 预测模型,以从患者就诊和总结的知识中捕获补充信息。 对两个 EHR 数据集的实验表明 Ram-EHR 相对于之前的