tokenization中bpe和word peice的区别

Answer

BPE与WordPiece的区别

BPE(Byte Pair Encoding)和WordPiece是两种常用的子词切分算法,它们在自然语言处理(NLP)任务中被广泛应用。尽管这两种方法在结构上相似,但在合并策略和目标上存在显著差异。

合并策略

  • BPE:
    • BPE的核心思想是通过频率来选择合并的子词对。它首先初始化一个包含所有字符的词表,然后统计训练数据中字符对的出现频率,选择出现频率最高的字符对进行合并。这一过程重复进行,直到达到预设的词表大小。
  • WordPiece:
    • WordPiece则采用了一种基于概率的合并策略。它同样从字符开始,但在选择合并的子词对时,考虑的是合并后对语言模型似然性的提升,而不是简单的频率。每次迭代中,WordPiece选择能够最大化整体似然值提升的子词对进行合并。

算法流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值