Poe
均方误差 (MSE) 和均方根误差 (RMSE) 是两种常用的误差衡量指标,用于评估模型预测值与实际值之间的偏差。它们虽然密切相关,但有一些区别和优劣势,适用于不同的场景。
1. 均方误差 (MSE)
公式:
MSE=1n∑i=1n(y^i−yi)2\text{MSE} = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2MSE=n1i=1∑n(y^i−yi)2
解释:
MSE 是预测值 $\hat{y}_i$ 和实际值 $y_i$ 之间的平方误差的平均值。它通过对误差进行平方,放大了较大的误差值的影响。
优点:
- 敏感性:对