- 博客(3416)
- 资源 (147)
- 收藏
- 关注
原创 Radxa Rock 5B vs Rock 5B+ 、香橙派、鲁班猫、正点原子及RK3588 的AI/音视频任务的选择
650 买 8G 的 Rock 5B V1.42,价格不贵,但早期版本稳定性有坑,适合玩票/开发,不太。
2025-08-25 15:42:47
55
原创 【嵌入式】RK3588 对比 NVIDIA Jetson,Radxa Rock 5B vs Orange Pi 5 Max
RK3588芯片分析:AI应用适配性与价格因素 RK3588作为瑞芯微8nm工艺旗舰SoC,集成8核CPU、Mali-G610 GPU和6TOPS NPU,专为边缘AI设计。其优势在于多路视频处理(如YOLO目标检测、人脸识别),但受限于INT8算力,无法支持大模型推理。价格偏高源于三大因素:8nm先进制程成本、工控市场定位导致的低出货量,以及开发板二次溢价(如Radxa Rock 5B)。与NVIDIA Jetson对比,RK3588算力仅为Jetson Orin的1/40,但功耗和成本优势使其在轻量级A
2025-08-22 16:59:11
28
原创 【motion】基于标签重合度的匹配算法1:原理
基于标签重合度的匹配算法通过计算输入标签与预设动作标签的交集/并集比例来评估相似度。该算法采用Jaccard相似系数,核心公式为:相似度=共同标签数/总不重复标签数。系统将LLM提取的标签与动作库中的每个类别进行比对,计算相似度分数并排序,返回最佳匹配结果。虽然算法简单高效,但存在无法处理语义相似性、标签粒度敏感等问题,可通过引入标签权重、同义词扩展或词向量模型来改进。
2025-08-22 11:47:35
27
原创 【clion】cmake脚本2:修改CMakeLists.txt构建Halo.dll
文章摘要:本文记录了在CLion中使用CMake调试和构建Fargo项目Win32版本的过程。作者遇到构建问题(lib成功但exe/dll未生成)后,提供了详细的排查步骤:1)检查关键文件是否存在;2)搜索相关符号定义;3)临时修改CMakeLists.txt文件(取消过滤源文件)。最终配置成功,加入了worker代码和absl库,包含24个源文件及多个第三方库路径(如OpenSSL、libwebrtc等),并成功定位到Abseil库的CMakeLists.txt文件。 (149字)
2025-08-21 14:08:46
32
原创 【clion】cmake脚本1:调试脚本并构建Fargo项目win32版本
文章摘要:本文记录了将Visual Studio项目转换为CMake项目并使用CLion构建32位程序的过程。主要问题包括CMake脚本中未知命令"use_props"错误,以及原有sln工程缺少CMake脚本。通过重构目录结构,将顶级CMakeLists.txt放在项目根目录,子项目脚本放在各自目录,解决了路径问题。调试过程显示成功加载了cmake_utils.cmake,并检测到多个第三方库文件。最终成功添加了20个Halo核心库源文件和多个第三方库的包含路径,包括fmt、OpenS
2025-08-20 23:21:39
137
原创 【clion】visual studio的sln转cmakelist并使用clion构建32位
本文介绍了两种将Visual Studio项目转换为CMake工程的工具:Vcxproj2CMake和cmakeconverter。其中cmakeconverter支持源码安装并通过pip安装到Python环境。实际转换过程中遇到了架构警告(x86需映射为Win32)和绝对路径问题。工具可将Windows项目转换为跨平台的CMake工程,便于在Linux环境下构建,同时保留Windows构建能力。安装验证显示工具能成功解析解决方案文件并生成CMakeLists.txt,但需注意处理项目路径和平台配置的兼容性
2025-08-20 22:17:23
161
1
原创 【motion】MTR-MSE类似TMR啊,但是无法获取到论文
本文提出MTR-MSE方法,通过运动语义扩展提升运动-文本跨模态检索性能。针对现有方法数据不足和特征提取受限的问题,该方法采用基于Transformer的变分自编码器提取运动时空特征,并利用大型语言模型生成多样化文本描述来增强语义理解。在特征对齐阶段,设计专门的运动和文本编码器(结合BERT和Transformer),并采用渐进式负样本对比学习策略解决相似语义区分难题。实验表明,该方法通过构建更丰富的共享特征空间,显著提高了跨模态检索的准确性。该研究为运动与语言之间的相互检索提供了新的技术思路。
2025-08-19 00:30:00
25
原创 【motion】身体动作与面部表情捕捉1:数据集与论文、Motion-X++
全身动作与面部表情捕捉数据集综述 本文介绍了当前主流的全身动作与面部表情捕捉数据集及技术进展。Motion-X(15.6M帧)和其升级版Motion-X++(19.5M帧)通过SMPL-X模型实现了身体、手势和面部表情的联合标注,填补了传统数据集缺乏面部信息的空白。SMPLify-X方法可从单张RGB图像重建全身3D网格,包含表情细节。CMU Panoptic Studio多视角系统则能高精度捕捉多人交互中的动作与微表情。这些数据集通过可扩展的注释管道、多模态融合(如音频)和优化算法,支持动作生成、虚拟现实
2025-08-18 01:00:00
25
原创 【motion】MotionGPT3: 人类动作作为第二种模态
MotionGPT3:统一运动语言的双模态框架 本文提出MotionGPT3模型,创新性地将人体运动作为第二模态,解决了多模态模型在运动理解与生成中的两大挑战:连续运动与离散表示的转换问题,以及统一训练中的语言能力退化问题。模型采用双分支架构,文本分支保留预训练语言模型参数,运动分支通过VAE编码和扩散头实现连续动作生成,两分支通过共享注意力机制交互。实验表明,该方法在保持语言能力的同时,实现了高质量的运动生成和理解。这一框架为多模态AI系统提供了新思路,展示了在不损害原有能力基础上扩展新模态的有效途径。
2025-08-18 00:15:00
24
原创 【远程桌面】从RustDesk服务器看UDP对比WebRTC
RustDesk服务器组件源码构建与协议分析 摘要: RustDesk服务器组件(hbbs/hbbr)采用Rust语言开发,支持从源码直接构建。构建流程包括克隆仓库、编译信令服务器(hbbs)和中继服务器(hbbr)二进制文件。其Cargo.toml文件显示使用了axum、sqlx等现代Rust库,并针对性能进行了LTO优化。协议分析表明中继服务器采用TCP协议而非UDP,通过FramedStream和WebSocketStream实现连接,具备带宽限制、连接监控等QoS功能。这种设计优先保证了远程桌面数据
2025-08-17 17:16:38
169
原创 【motion】GIF 转mp4及ubuntu的VLC播放
你照着跑就能把 UE GIF 批量转成 MP4,并用非沙箱版 VLC 播放,不再遇到 Permission denied。可按你的 UE 资源实际帧率调整或删除。确保分辨率是偶数(H.264 友好);改用 APT 版 VLC,最省心。如果仍报权限问题,那就还是建议用。转完会自动用 VLC 打开。
2025-08-14 17:13:19
81
原创 【动态规划】leecode 198的打家劫舍1:为啥是dp而不是贪心
摘要: 本文分析了LeetCode 198题"打家劫舍"的动态规划解法。通过比较dp[n+1]和dp[n]两种写法,阐述了核心状态转移方程:dp[i] = max(dp[i-1], dp[i-2]+nums[i])。文章用通俗语言解释了为何这不是贪心算法(局部最优≠全局最优)和暴力穷举(O(n)优于O(2^n)),并展示了滚动变量优化空间复杂度为O(1)的技巧。通过示例[2,7,9,3,1]逐步演示算法过程,最终得出正确解12。两种dp数组写法差异在于:n+1长度时dp[1]对应nums
2025-08-14 15:21:00
26
原创 【motion】MotionGPT3: 人体动作作为第二种模态
MotionGPT3:统一文本与动作生成的多模态框架 摘要:MotionGPT3提出了一种创新的双分支架构,将人体动作作为第二种模态融入语言模型。该模型通过变分自编码器(VAE)将连续动作编码为潜在向量,采用扩散模型生成高质量动作序列,解决了传统离散表示导致的动作失真问题。系统采用三阶段训练策略:首先预训练动作分支,然后进行跨模态对齐,最后联合微调,在保持语言理解能力的同时扩展动作生成能力。实验表明,该框架在HumanML3D数据集上的文本到动作和动作到文本任务中均达到最优性能,特别适合动作库自动标注等应用
2025-08-14 01:00:00
54
原创 【motion】身体动作与面部表情捕捉5:Motion-X++ 数据集下载和选择
应用场景最推荐的数据源理由说明舞蹈 / MV 演出IDEA400 + AIST + 在线视频丰富表情与手势、舞蹈语义、音乐驱动情绪演唱 / 互动剧情(拥抱等)道具交互或人际互动,细致表情和手部控制日常动作 / 剧情过渡 / 多场景需求HAA500 + 在线视频分类广泛、自然演绎、实拍贴近真实剧本多模态驱动(歌词+音乐+动作)Motion-X++ 全集同步视频、音频、SMPL-X、文本完整,适合整体训练与检索。
2025-08-13 22:28:59
69
原创 git clone 支持在命令行临时设置proxy
git clone 临时设置代理的两种方法: 命令行临时代理:用 -c 参数指定代理,仅对当前命令生效(支持 HTTP/SOCKS5)。 环境变量代理:通过 export 设置临时代理变量,仅限当前终端会话。 推荐使用 -c 方式避免影响其他操作,完成后无需手动清理配置。若需频繁代理,可考虑全局配置或一键脚本。 (摘要字数:98字)
2025-08-13 22:22:51
437
原创 【motion】身体动作与面部表情捕捉4:Motion-X++ 用 GPT-4V 及开源替代
Motion-X++论文中采用了GPT-4V(GPT-4 with Vision)作为核心模型,这是一个支持文本+图像输入的多模态大语言模型。该模型能从动作视频的关键帧中提取序列级语义标签和帧级姿态描述,显著提升语义信息的密度和精度。虽然GPT-4V是OpenAI提供的商用API服务,但论文中仅将其用于研究数据处理。相比纯文本的GPT-4,GPT-4V能直接理解视频帧的视觉内容。目前已有LLaVA、Qwen-VL等开源多模态模型可作为替代方案,但效果仍逊于GPT-4V和Google Gemini等商业API
2025-08-13 12:40:56
72
原创 经典排序算法
摘要:本文介绍了8种经典排序算法及其特性。选择排序通过选择最小元素实现O(n²)排序;插入排序适合小规模数据,时间复杂度O(n²)至O(n);快速排序平均O(n log n),是常用高效算法;归并排序稳定且适合外部排序;堆排序利用堆结构实现原地排序;计数排序适用于小范围整数;基数排序按位处理数据;桶排序在均匀分布时效率高。各算法在时间复杂度、空间复杂度及适用场景上各有特点,需根据数据特征选择合适算法。 (149字)
2025-08-13 10:35:35
236
原创 【motion】身体动作与面部表情捕捉3:Motion-X++ 不同数据集处理过程分析
| .npz(SMPL-X 参数),.json(文本) | | 单视角视频(如 MV/电影片段) | 3–6 | 单视角 SMPL-X 稳健估计(轨迹优化) | VideoPose3D + SMPLify-X + GPT-4V 文本生成 | .npz(SMPL-X 参数),.json(文本) | | 动捕数据(纯身体) | 3,5,6 | 跳过 4;用 EMOCA 补表情 | EMOCA 表情参数合成 + GPT-4V 文本生成 | .npz(SMPL-X 参数),.json(文本) | | 面部数据集(如
2025-08-12 18:34:02
53
原创 【motion】身体动作与面部表情捕捉2:Motion-X++ 论文分析
Motion-X++是一个大规模多模态3D全身人体运动数据集,相比前代Motion-X提供了更精确的人体运动捕捉(包括面部表情和手势)、更丰富的模态(如音频和视频)以及更高质量的文本标注(使用GPT-4V)。该数据集支持多种下游任务,包括视频生成、全身姿态估计和音频驱动运动生成。通过优化SMPL-X模型参数并整合8个现有动作数据集,Motion-X++实现了帧级别的全身姿势描述,能够计算身体部位和手势的空间关系,并提取面部表情。该数据集在文本驱动的运动生成和网格恢复等任务上表现出色。
2025-08-12 18:28:18
48
原创 【动态规划】leecode 198的打家劫舍2:dp集合有两种写法对比
LeetCode 198打家劫舍问题的DP解法主要有两种数组定义方式: 长度n+1的DP数组: dp[0]表示0个房子的金额0 dp[i]对应nums[i-1] 转移方程:dp[i] = max(dp[i-1], dp[i-2]+nums[i-1]) 优点:数学定义清晰 缺点:索引需要偏移 长度n的DP数组: dp[0]直接表示第一个房子 dp[i]对应nums[i] 转移方程:dp[i] = max(dp[i-1], dp[i-2]+nums[i]) 优点:索引直观 缺点:初始条件不够直观 两种方法核心思
2025-08-12 17:04:46
35
原创 【python】如何优雅的打印图的结构
本文介绍了5种优雅的图形化展示图结构的方法:1)树形视图直观展示节点层级关系;2)分层视图清晰呈现各层节点;3)美化邻接表直观显示连接关系;4)拓扑排序检测循环;5)一键导出Graphviz DOT格式。文中提供了完整的Python实现代码,包含DFS/BFS遍历、拓扑排序等算法,并可输出多种可视化格式。这些方法无需第三方库,能有效帮助开发者理解和分析图数据结构,适用于树形结构、层级关系、邻接信息等不同场景的可视化需求。
2025-08-12 11:48:07
28
原创 【windows】samba共享文件夹 重启
摘要 Windows系统通过SMB协议实现文件共享,而非Samba服务。本文提供Windows环境下共享服务的维护方法:1)作为服务器时重启LanmanServer和FDResPub服务;2)作为客户端时重启LanmanWorkstation服务并清理网络缓存;3)检查SMB版本兼容性,慎用SMB1;4)访问Linux共享需在服务端重启Samba服务。另附快速排错指南,包括网络连通性测试、防火墙设置验证等。所有操作均需管理员权限执行PowerShell命令完成。
2025-08-12 11:21:56
277
原创 【motion】文本到动作检索: 2023TMR模型( Text-to-Motion Retrieval Using Contrastive 3D Human Motion Synthesis)
TMR
2025-08-07 21:47:24
44
原创 【motion】 AMASS 数据集 2: npz对比bvh及CMU下载动捕bvh
摘要: AMASS数据集通过MoSh++技术将光学动捕数据转换为SMPL模型的参数化表示(.npz格式),包含形状(betas)、姿态(pose)和平移(trans)参数,相比传统BVH文件具有统一拓扑、低维可微分、支持软组织动态等优势,更适配深度学习任务。CMU动捕数据库提供大量BVH格式资源,但需额外解析处理。AMASS的数据结构可直接集成Python训练流程,而BVH需绑定骨骼和网格,开发复杂度更高。相关资源链接包括AMASS官网、CMU动捕库及第三方转换版本。 (字数:149)
2025-08-07 17:28:36
55
原创 【motion】 AMASS 数据集 1
传统数据集包含骨骼和/或标记,而 AMASS 数据集还提供了完全绑定好的 3D 网格。使用 MoSh++ 可以轻松添加更多数据,我们将继续扩展数据集。https://amass.is.tue.mpg.de/ 德国。
2025-08-07 15:37:10
54
原创 【motion】标签体系设计检索2: HumanML3D vs KITML 分析对比
Motion Dataset Labeling Systems Technical Comparison The analysis compares two prominent motion-language annotation systems: HumanML3D and KIT Motion-Language Dataset (KITML). HumanML3D offers a large-scale approach with 14,616 clips and 44,970 description
2025-08-07 00:15:00
35
原创 【motion】标签体系设计与检索 1:HumanML3D 和 KIT Motion-Language(KITML)
HumanML3D与KITML数据集对比与应用建议 摘要 HumanML3D和KIT Motion-Language(KITML)是动作-语言关联研究领域的两大关键数据集。KITML作为2016年发布的奠基性数据集,首次提出3D动作-文本关联标准化方法,包含3,911段动作和6,278条描述,采用MMM统一格式和困惑度筛选机制。2022年发布的HumanML3D则在规模上实现突破,包含14,616段动作和44,970条多视角描述,采用SMPL标准化骨骼,成为当前文本到3D动作生成的主流基准。两个数据集共同构
2025-08-07 00:00:00
84
原创 【motion】HumanML3D 的安装2:psbody-mesh安装成功
本文介绍了在搭建HumanML3D项目环境时遇到的依赖问题及解决方案。作者首先通过修改yaml文件成功创建了conda环境,但在安装过程中发现缺少body-visualizer、configer和psbody-mesh三个关键包。通过手动使用git命令安装这些依赖项,其中body-visualizer和configer安装成功,但psbody-mesh在构建过程中出现错误(exit status 1)。文中详细记录了完整的安装命令和终端输出,包括环境激活、依赖安装过程以及遇到的C++构建问题,为后续调试提供
2025-08-05 21:53:09
115
原创 【motion】HumanML3D 的安装1:环境搭建
该GitHub issue讨论HumanML3D项目的环境配置问题。用户尝试通过conda安装依赖包时出现下载进度停滞(显示0%),主要卡在mkl-2021.4.0(142.6MB)等大型包的下载环节。日志显示多个核心依赖如Qt、Python、pandas等均未能正常开始下载,可能由网络连接或镜像源问题导致。典型表现为conda环境创建过程中断,需检查网络配置或更换conda镜像源以解决依赖下载失败的问题。
2025-08-05 21:18:14
77
原创 【motion】标签检索设计 3:HumanML3D的四组件结构化标注格式
HumanML3D结构化标注格式解析 HumanML3D采用创新的四组件标注格式,巧妙融合人类可读性与机器处理需求: 结构化设计 原始描述:保持自然语言完整性 词性标注:提供语法结构信息(Penn Treebank标准) 时间窗口:精确标注动作起止时间(秒级精度) 语义表达优势 支持动作方向、速度、身体部位等细节标注 通过词性标签识别语法关系(如主谓宾结构) 时间标注实现动作序列的精确对齐 应用价值 为文本到动作生成提供丰富语义基础 便于动作检索与匹配("walks forward slowly&
2025-08-01 11:27:16
47
原创 【git】GitHub 的专用代理地址
本文介绍了三种修改Git代理设置的方法:1)修改GitHub专属代理地址;2)取消GitHub专属代理;3)设置全局通用代理。通过git config命令可分别配置http/https代理,使用--unset取消设置,并通过git config --list验证配置。文中还提到可使用socks5协议,并提供了从地址修改到代理切换的完整解决方案。操作简单明了,适合需要灵活管理Git代理的用户。
2025-07-30 17:08:59
412
原创 【motIon】Text-to-Motion Retrieval: 迈向人体动作数据与自然语言联合理解
本文研究了文本到动作检索任务,对比了不同文本编码器(BERT+LSTM vs CLIP)和动作模型(BiGRU、UpperLowerGRU、DG-STGCN、MoT)在HumanML3D和KIT ML数据集上的性能。结果表明:1)CLIP文本编码器显著优于BERT+LSTM;2)DG-STGCN图卷积网络在多数指标上表现最优,证明其能有效建模人体骨骼时空结构;3)提出的MoT Transformer模型在CLIP基础上,在KIT ML数据集上取得R@10=42.6、med=14的最佳表现,表明其在保持语义理
2025-07-30 15:33:53
41
原创 【motion】windows 11 安装pixi fbx 和Momentum
pixi是一个跨平台的开发环境工具,支持Windows、macOS和Linux系统。安装简单,在Windows上可通过PowerShell命令一键安装(iwr -useb https://pixi.sh/install.ps1 | iex),自动下载最新版本并安装到用户目录。该工具由prefix.dev开发,旨在为开发者提供强大的跨平台开发环境支持。与同类工具相比,pixi具有更便捷的安装流程和跨平台兼容性特点。
2025-07-28 09:00:51
56
原创 【公众号】安装插件微信公众号助手:This Extension is No longer Available (2025): Fix Chrome Extension Not Supported
这篇教程介绍了如何解决Chrome商店禁用的扩展程序问题。文章提供了替代安装地址和详细教程链接,通过截图展示了使用快捷键Ctrl+Shift+C的完整操作流程,帮助用户重新安装被禁用的扩展程序。教程包含多张操作界面截图,指导用户完成从安装到使用的每个步骤。
2025-07-24 16:08:41
208
原创 【智能车】基于ESP8266 的方案
ESP8266智能小车项目摘要 本项目基于ESP8266(NodeMCU)开发智能小车控制系统,包含硬件搭建、固件烧录和远程控制功能实现。硬件采用4WD底盘结构,配备L293D电机驱动模块和红外寻迹传感器,支持PID控制算法优化运动性能。软件方面使用Arduino IDE开发,通过PyFlasher工具烧录固件,并实现网页端远程控制界面。项目还提供了寻迹、避障、遥控等多种功能演示视频和完整代码资源,适合物联网和智能硬件爱好者学习实践。 (150字)
2025-07-21 11:35:19
65
原创 【智能车】L298N 驱动模块
本文通过多张图片展示了不同场景下的技术应用示例,包括代码实现、系统架构和运行效果等可视化内容。这些图片涵盖了开发过程中的关键环节,为读者提供了直观的技术参考。虽然未包含详细文字说明,但图像内容本身已能清晰呈现技术实现的各个阶段,适合开发者快速理解相关技术要点和应用场景。
2025-07-21 11:34:44
56
原创 【langgraph】Context Engineering 上下文工程
写入上下文 - 将其保存到上下文窗口之外,以帮助代理执行任务。Selecting context - pulling it into the context window to help an agent perform a task.选择上下文 - 将其拉入上下文窗口以帮助代理执行任务。Compressing context - retaining only the tokens required to perform a task.压缩上下文 - 仅保留执行任务所需的标记。
2025-07-18 11:58:30
98
Creating Android Applications: Develop and Design 源码
2014-04-16
openssl-OpenSSL_1_1_1-stable.7z
2020-07-04
nexus5-cm11 提取的boot.img
2015-03-30
moto MB865 ROOT 工具包
2014-03-28
DX910-SW-99002-r3p2-01rel1.tgz
2015-09-01
usb转串口适用于win8/8.1/10
2015-08-02
nexusd5 android5.0 型号LRX210 ROOT所需文件打包
2014-11-23
Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale P2P
2025-06-17
srs-ingest-helper
2025-06-17
Whole Tomato Visual Assist X 2023.1 v10.9.2476.0 (19 Jan 2023)
2023-05-28
vs2022 visual assist x10.9.2451.0 by piaopyun/oledlg
2022-09-23
VS2022 VISUAL ASSIST X 小番茄 v10.9.2435.0 VA_X_Setup2440_0.exe
2022-02-25
[FLV 解析工具]FLV_UI_Parse.exe
2021-10-08
【右键菜单直接修改工具】shmnviewRightMenuModiy.zip
2021-10-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人