Drop Voicing

Drop Voicing

题解:多次的Invert和多次的Drop一定是可以把某个数放在指定位置的。那么求出一个序列的最长升序子序列cnt,那么就需要执行n-(多次的Invert和多次的Drop)。因为Invert可以将第一个放在最后,那么就会有n个不同下表的序列,是一个循环。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int inf = 0x7f7f7f7f;
const int N = 1e6+10;
const ll mod = 1e9+7;
const double PI = 3.14;

int read(){
    char ch=getchar();int x=0,f=1;
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while('0'<=ch&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int random(int n){return(ll)rand()*rand()%n;}


int a[N],b[N],c[N];

int solve(int n){
    int len = 0;
    for(int i = 1;i <= n;i++){
        if(len == 0) c[len++] = b[i];
        else if(b[i] > c[len-1]) c[len++] = b[i];
        else {
            int k = lower_bound(c,c+len,b[i])-c;
            c[k] = b[i];
        }
    }
    return len;
}
int main(){
    //srand((unsigned)time(0));
    //freopen("out.txt","w",stdout);
    //freopen("in.txt","r",stdin);
    //cout<<50*(50/2500)<<endl;
    int n = read();
    for(int i = 1;i <= n;i++){
        a[i] = read();
    }
    int cnt = 0;
    for(int i = 1;i <= n;i++){
        int k = i;
        for(int j = 1;j <= n;j++){
            b[j] = a[k];
            k++;if(k == n+1) k = 1;
        }
        cnt = max(cnt,solve(n));
    }
    printf("%d\n",n-cnt);
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值