完全背包

题目描述
一个旅行者有一个最多能装M公斤的背包,现在有n种物品,每件物品数量无限的,它们的重量分别是wi,它们的价值分别是vi元。从中选取若干件(同一物品可以选任意件),求旅行者能获得最大总价值。

输入
第1行:两个整数,M背包容量(M<=1000)和n物品数量(n<=30);
第2至n+1行:每行两个整数wi,vi,表示每个物品的重量和价值。

输出
一个数,表示最大总价值。

样例输入
10 4
2 1
3 3
4 5
7 9
样例输出
12

这就相当于在01背包的基础上又加了一层for循环
dp[i][j] 表示在j的容量下物品1~i的最大价值
k表示a[i]能装入的数量
在j的容量下k的最大值入j/a[i],最小值为0

#include <stdio.h>
#include <algorithm>
using namespace std;
int w[35];
int v[35];
int dp[35][1005];
int main()
{
	int m,n;
	scanf("%d %d",&m,&n);
	for(int i = 1;i <= n;i++){
		scanf("%d %d",w+i,v+i);
	}
	
	for(int i = 1;i <= n;i++){
		for(int j = 1;j <= m;j++){
			for(int k = 0;k <= j/w[i];k++){
				/*
				如果此时w[i]的值大于j那么a[i]肯定就放不下,只能
				放1~i-1的最大值,也就是dp[i-1][j]; 
				*/
				if(w[i] > j) dp[i][j] = dp[i-1][j];
				else {
					//与上面的解释相同,只是这里选择的是不放 
					int x = dp[i-1][j];
					/*
					如果放的话,此时要放入的重量为k*w[i]
					那么就要选择j-k*w[i]的容量下在1~i-1的最大值
					并且加上此时的价值 
					*/ 
					int y = dp[i-1][j-k*w[i]]+k*v[i];
					dp[i][j] = max(x,y);
				}
			}
		}
	}
	printf("%d\n",dp[n][m]);
	return 0;
}

这是将二维dp转换成一维dp
for(int j = t[i];j <= T;j++)
这儿为什么要从前面开始呢?
这个在于它的每个药数的个数不确定,要选择大的,而后面的结果是由前面的最大值决定的

#include <stdio.h>
#include <algorithm>
using namespace std;
int t[10005];
int v[10005];
int dp[1000005];
int main()
{
	int T,M;
	scanf("%d %d",&T,&M);
	for(int i = 1;i <= M;i++){
		scanf("%d %d",t+i,v+i);
	}
	/*
	将完全背包转成一维 
	*/
	for(int i = 1;i <= M;i++){
		for(int j = t[i];j <= T;j++){
			dp[j] = max(dp[j],dp[j-t[i]]+v[i]);
		}
	}
	for(int i = 1;i <= T;i++){
		printf("%5d",dp[i]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值