题目描述
一个旅行者有一个最多能装M公斤的背包,现在有n种物品,每件物品数量无限的,它们的重量分别是wi,它们的价值分别是vi元。从中选取若干件(同一物品可以选任意件),求旅行者能获得最大总价值。
输入
第1行:两个整数,M背包容量(M<=1000)和n物品数量(n<=30);
第2至n+1行:每行两个整数wi,vi,表示每个物品的重量和价值。
输出
一个数,表示最大总价值。
样例输入
10 4
2 1
3 3
4 5
7 9
样例输出
12
这就相当于在01背包的基础上又加了一层for循环
dp[i][j] 表示在j的容量下物品1~i的最大价值
k表示a[i]能装入的数量
在j的容量下k的最大值入j/a[i],最小值为0
#include <stdio.h>
#include <algorithm>
using namespace std;
int w[35];
int v[35];
int dp[35][1005];
int main()
{
int m,n;
scanf("%d %d",&m,&n);
for(int i = 1;i <= n;i++){
scanf("%d %d",w+i,v+i);
}
for(int i = 1;i <= n;i++){
for(int j = 1;j <= m;j++){
for(int k = 0;k <= j/w[i];k++){
/*
如果此时w[i]的值大于j那么a[i]肯定就放不下,只能
放1~i-1的最大值,也就是dp[i-1][j];
*/
if(w[i] > j) dp[i][j] = dp[i-1][j];
else {
//与上面的解释相同,只是这里选择的是不放
int x = dp[i-1][j];
/*
如果放的话,此时要放入的重量为k*w[i]
那么就要选择j-k*w[i]的容量下在1~i-1的最大值
并且加上此时的价值
*/
int y = dp[i-1][j-k*w[i]]+k*v[i];
dp[i][j] = max(x,y);
}
}
}
}
printf("%d\n",dp[n][m]);
return 0;
}
这是将二维dp转换成一维dp
for(int j = t[i];j <= T;j++)
这儿为什么要从前面开始呢?
这个在于它的每个药数的个数不确定,要选择大的,而后面的结果是由前面的最大值决定的
#include <stdio.h>
#include <algorithm>
using namespace std;
int t[10005];
int v[10005];
int dp[1000005];
int main()
{
int T,M;
scanf("%d %d",&T,&M);
for(int i = 1;i <= M;i++){
scanf("%d %d",t+i,v+i);
}
/*
将完全背包转成一维
*/
for(int i = 1;i <= M;i++){
for(int j = t[i];j <= T;j++){
dp[j] = max(dp[j],dp[j-t[i]]+v[i]);
}
}
for(int i = 1;i <= T;i++){
printf("%5d",dp[i]);
}
return 0;
}