题目描述
给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒)。请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现。
输入输出格式
输入格式:
第一行输入一个正整数n。
以下n行每行两个字母,表示这两个字母需要相邻。
输出格式:
输出满足要求的字符串。
如果没有满足要求的字符串,请输出“No Solution”。
如果有多种方案,请输出前面的字母的ASCII编码尽可能小的(字典序最小)的方案
输入输出样例
输入样例#1:
4
aZ
tZ
Xt
aX
输出样例#1:
XaZtX
说明
【数据规模与约定】
不同的无序字母对个数有限,n的规模可以通过计算得到。
思考:每输入一串字符串,就统计一下两个字符之间的关系,并且建立一个图。
然后就要分析了这个图可能是欧拉回路,也有可能是欧拉路径
欧拉回路是每个结点的度都为偶数,
欧拉路径是只有两个结点度数为奇数,其它为结点度数为偶数,别的是不成立的。
bfs是套用的模板
#include <stdio.h>
#include <algorithm>
using namespace std;
int G[150][150];
int vis[150];
int len = 0;
char ans[500];
void bfs(int x)
{
for(int i = 65;i <= 122;i++){
if(G[x][i]){
G[x][i]--;
G[i][x]--;
bfs(i);
}
}
ans[len++] = x;
return;
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
char s[5];
scanf("%s",s);
int x = s[0];
int y = s[1];
G[x][y]++;
G[y][x]++;
vis[x]++;
vis[y]++;
}
int c = 0,h,p;
for(int i = 122;i >= 65;i--){//从后面是因为待会儿输出的时候要逆序
if(vis[i]%2) c++,h = i;//如果出现奇数,那说明是寻找欧拉路径,而不是欧拉回路
if(vis[i]) p = i;//如果没有奇数,所以就找第一个
}
if(c > 2 || c == 1){//两个以上的奇数或者一个奇数,是不存在欧拉图的
printf("No Solution\n");
}else {
if(c == 0) h = p;//没有奇数的情况下,所以找第一个有度的
bfs(h);
for(int i = len-1;i >= 0;i--){
printf("%c",ans[i]);
}
}
return 0;
}