P1341 无序字母对

题目描述
给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒)。请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现。

输入输出格式
输入格式:
第一行输入一个正整数n。

以下n行每行两个字母,表示这两个字母需要相邻。

输出格式:
输出满足要求的字符串。

如果没有满足要求的字符串,请输出“No Solution”。

如果有多种方案,请输出前面的字母的ASCII编码尽可能小的(字典序最小)的方案

输入输出样例
输入样例#1:
4
aZ
tZ
Xt
aX
输出样例#1:
XaZtX

说明
【数据规模与约定】

不同的无序字母对个数有限,n的规模可以通过计算得到。

思考:每输入一串字符串,就统计一下两个字符之间的关系,并且建立一个图。
然后就要分析了这个图可能是欧拉回路,也有可能是欧拉路径
欧拉回路是每个结点的度都为偶数,
欧拉路径是只有两个结点度数为奇数,其它为结点度数为偶数,别的是不成立的。
bfs是套用的模板

#include <stdio.h>
#include <algorithm>
using namespace std;
int G[150][150]; 
int vis[150];
int len = 0;
char ans[500];
void bfs(int x)
{
	for(int i = 65;i <= 122;i++){
		if(G[x][i]){
			G[x][i]--;
			G[i][x]--;
			bfs(i);
		}
	}
	ans[len++] = x;
	return;
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--){
		char s[5];
		scanf("%s",s);
		int x = s[0];
		int y = s[1];
		G[x][y]++;
		G[y][x]++;
		vis[x]++;
		vis[y]++;
	}
	int c = 0,h,p;
	for(int i = 122;i >= 65;i--){//从后面是因为待会儿输出的时候要逆序 
		if(vis[i]%2) c++,h = i;//如果出现奇数,那说明是寻找欧拉路径,而不是欧拉回路 
		if(vis[i]) p = i;//如果没有奇数,所以就找第一个 
	}
	if(c > 2 || c == 1){//两个以上的奇数或者一个奇数,是不存在欧拉图的 
		printf("No Solution\n");
	}else {
		if(c == 0) h = p;//没有奇数的情况下,所以找第一个有度的 
		bfs(h);
		for(int i = len-1;i >= 0;i--){
			printf("%c",ans[i]);
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值