optim.Adam优化算法

1852 篇文章 ¥199.90 ¥299.90
1440 篇文章 ¥199.90 ¥299.90
836 篇文章 ¥199.90 ¥299.90

目录

optim.Adam优化算法


optim.Adam优化算法

是 PyTorch 中实现 Adam 优化算法的类,它是一种用于训练深度神经网络的优化器。Adam 优化器结合了 AdaGrad 和 RMSProp 的优点,通过计算梯度的一阶矩估计(即平均值)和二阶矩估计(即未中心的方差)来动态调整每个参数的学习率,使得训练过程更加高效和稳定。以下是 optim.Adam 的主要作用和参数说明:

  1. 自适应学习率:Adam 优化器根据每个参数的梯度历史信息自动调整学习率,使得不同参数可以有不同的学习率。

  2. 动量项:Adam 优化器结合了动量项,这有助于加速梯度方向一致时的收敛,并减少震荡。

  3. 参数

    • params:需要优化的参数或参数组。
    • lr:学习率,控制每次参数更新的步长,默认值为 0.001。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值