PCA主成分分析的输入输出解析

1852 篇文章 ¥199.90 ¥299.90
1440 篇文章 ¥199.90 ¥299.90
1251 篇文章 ¥199.90 ¥299.90

PCA(n_components=n_components) 是什么意思

这段代码是使用PCA(主成分分析)从高维向量中提取主成分,输入输出的形状及含义如下:

在这里插入图片描述

输入:contrast_vectors 的形状

contrast_vectors 是用于PCA拟合的数据,形状为 (样本数, 特征维度),即 (n_samples, n_features)

  • n_samples:参与PCA计算的样本数量(例如,若分析100个注意力向量,n_samples=100)。
  • n_features:每个样本的特征维度(例如,注意力向量的维度为768,则 n_features=768)。

输出:pca.components_[0] 的形状

pca.components_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值