BERT技术详细介绍 |
文章目录
- 使用BERT模型解决NLP任务需要分为两个阶段:
- pre-train阶段:用大量的无监督文本通过自监督训练的方式进行训练,把文本中包含的 语言知识(包括:词法、语法、语义等特征) 以 参数的形式编码到 Transformer-encoder layer 中。预训练模型学习到的是文本的 通用知识,不依托于某一项NLP任务;
- fine-tune阶段:使用预训练的模型,在 特定的任务 中进行微调,得到用于解决该任务的定制模型;
一. BERT整体模型架构
- BERT全名Bidirection En