『NLP学习笔记』BERT技术详细介绍

本文详细介绍了BERT模型,包括其模型架构、预训练阶段的MLM和NSP任务、如何微调BERT以提升在下游任务中的表现,以及如何使用Transformer包中的BERT。BERT使用双向Transformer Encoder,通过预训练学习通用语言知识,然后在特定任务上微调,如序列标注、文本分类和语句对分类。预训练阶段的MLM任务要求模型根据上下文预测被遮掩的词,NSP任务则判断两个句子是否相邻。微调时,可以利用CLS向量进行文本分类,或结合每个词的输出进行序列标注。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BERT技术详细介绍

  • 使用BERT模型解决NLP任务需要分为两个阶段
  • pre-train阶段:用大量的无监督文本通过自监督训练的方式进行训练,把文本中包含的 语言知识(包括:词法、语法、语义等特征)参数的形式编码到 Transformer-encoder layer 中。预训练模型学习到的是文本的 通用知识,不依托于某一项NLP任务;
  • fine-tune阶段:使用预训练的模型,在 特定的任务 中进行微调,得到用于解决该任务的定制模型;

一. BERT整体模型架构

  • BERT全名Bidirection En
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值