题目:
日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。分完后父亲说:“老大将分给你的桔子的1/8给老二;老二拿到后连同原先的桔子分1/7给老三;老三拿到后连同原先的桔子分1/6给老四;老四拿到后连同原先的桔子分1/5给老五;老五拿到后连同原先的桔子分1/4给老六;老六拿到后连同原先的桔子分1/3给老大”。结果大家手中的桔子正好一样多。问六兄弟原来手中各有多少桔子?
分析:
倒推就可以了:
总共2520,分到最后没人是2520/6=420
老六拿到后连同原先的桔子分1/3给老大,所以老六没分给老大之前是420*3/2=630,分给老大的是630/3=210;
老大最后也是420,所以老大在分给老二后的橘子数为420-210=210;
而老大将分给你的桔子的1/8给老二,故老大未分给老二前的橘子数为210*8/7=240;
老二拿到后连同原先的桔子分1/7给老三,设老二本身的橘子树为x,则(x+30)*6/7=420;老二本身的橘子数为460;
....
以此类推!
#include<stdio.h>
int main()
{
int i;
float a[6];
for(i=0;i<6;i++)
a[i]=420.0;
for(i=5;i>0;i--)
{
a[i]=a[i]*(8-i)/(7-i);
// printf("%-6.0f\n",a[i]);
}
a[0]=210.0*8/7;
for(i=5;i>0;i--)
{
a[i]-=a[i-1]/(9-i);
}
printf("原来六兄弟手中的桔子为:\n");
for(i=0;i<6;i++)
{
printf("%d-->%-6.0f\n",i+1,a[i]);
}
}