如何简单的复制dataframe列

本文介绍了在Python的Pandas库中,如何使用DataFrame的一个特性批量复制列,即使列名相同,通过指定重复的列名列表即可轻松实现。作者展示了如何通过`pd.DataFrame`和`numpy`库创建并复制列的操作方法。

        今天在做项目的时候无意中发现了dataframe的一个特性,就是批量复制列的功能,而且列名是一样的,一般情况下,如果用df['xxx'] = xxx的方式,是没办法复制多个列名一样的列的,操作一次只会覆盖上次的赋值,如果要实现一个dataframe有两个同名的列,可以用pd.concat方法把两个含有同名列的dataframe拼接到一起,但是今天这种方法操作很简单,只需要一个df,就能复制同名列,废话不多说,直接上代码,其实也很简单,

import pandas as pd
import numpy as np

df = pd.DataFrame({
    'a':np.arange(5),
    'b':np.arange(5),
    'c':np.arange(5),
    'd':np.arange(5),
})
l = ['a','b','c','a','b','c']
df_n = df[l]
df_n

输出

   a	b	c	a	b	c
0	0	0	0	0	0	0
1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4

可以看到,只要将筛选的列名list重复写几次,就能轻松的实现复制列功能。

<think>根据用户的问题,用户想要了解如何查看DataFrame中每的数据类型。结合提供的引用信息,特别是引用[2]和引用[3],我们可以知道使用`dtypes`属性或`info()`方法可以查看数据类型。 引用[2]提到:使用`df.dtypes`可以查看DataFrame中每一列的数据类型。 引用[3]提到:使用`dtypes`属性和`info()`方法可以查看DataFrame的数据类型。 因此,回答将围绕这两个方法展开。 另外,引用[4]提到`df.describe()`,但它是用来显示统计信息的,只能统计数值类型的,所以不适用于查看数据类型。 步骤: 1. 导入pandas库(如果还没有导入的话)。 2. 创建一个DataFrame(示例)。 3. 使用`df.dtypes`查看每的数据类型。 4. 使用`df.info()`查看更详细的信息,包括每的数据类型、非空值数量等。 注意:在回答中,我们不需要创建DataFrame,因为用户可能已经有了自己的DataFrame,所以只需展示如何查看即可。 考虑到用户可能需要复制代码运行,我们提供示例代码。 根据系统指令,所有行内数学表达式用$...$,独立公式用$$...$$,但本问题不涉及数学公式,所以可以忽略。 生成相关问题:围绕DataFrame数据类型相关的问题。 回答结构: - 先简要介绍查看数据类型的方法。 - 然后分别展示两种方法。 - 最后总结。 引用标识:在引用到的地方添加引用标识,如[^2]。</think>### 如何查看DataFrame的数据类型 在Pandas中,查看DataFrame数据类型主要有两种方法,操作简单且高效: #### 方法1:使用 `dtypes` 属性(推荐) 直接调用DataFrame的`dtypes`属性,会返回一个Series对象,其中索引是名,值是对应的数据类型: ```python import pandas as pd # 创建示例DataFrame data = {'年龄': [25, 30, 35], '姓名': ['张三', '李四', '王五'], '入职日期': pd.date_range('20230101', periods=3)} df = pd.DataFrame(data) # 查看每数据类型 print(df.dtypes) ``` 输出结果示例: ``` 年龄 int64 姓名 object 入职日期 datetime64[ns] dtype: object ``` 此方法简洁直观,适合快速查看[^2][^3]。 #### 方法2:使用 `info()` 方法 该方法提供更全面的信息,包括数据类型、非空值数量和内存使用: ```python df.info() ``` 输出结果示例: ``` <class 'pandas.core.frame.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 年龄 3 non-null int64 1 姓名 3 non-null object 2 入职日期 3 non-null datetime64[ns] dtypes: datetime64[ns](1), int64(1), object(1) memory usage: 200.0+ bytes ``` 特别适合数据清洗时检查缺失值和类型分布[^3]。 #### 注意事项 1. 数值类型会显示为`int64`/`float64`,字符串显示为`object`或`string`(Pandas 1.0+) 2. 日期时间类型显示为`datetime64[ns]` 3. 分类数据会显示为`category` 4. 使用`df.describe()`只能查看数值的统计信息,无法显示数据类型[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羸弱的穷酸书生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值