多onnx模型导出合并调研(文本检测+方向分类+文本识别)

👑主页:吾名招财
👓简介:工科学硕,研究方向机器视觉,爱好较广泛…
​💫签名:面朝大海,春暖花开!

引言

目标:
  部署端只用一个模型实现文本检测及文本识别。
  目前是文本检测、文本方向分类、文本识别三个模型分别训练,然后部署的话需要三个分别部署并使用自定义流程连接,现在需要想将其三个模型按照顺序合并成为一个模型,然后再用这一个模型部署(方便部署),此时仅仅是简化了部署流程。
  一种是上面的,另一种是端到端的算法(PGNET),这是一个算法,这个算法同时进行文本检测及文本识别输出,最终一个模型训练输出,因后续要对文本识别通用模型进行部署,故此端到端方法暂时舍弃。

模型拼接调研验证:
1,直接对onnx模型进行操作合并拼接测试验证。
2,将onnx模型转换成pytorch再在pytorch中合并两个模型测试验证。

onnx结构:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吾名招财

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值