【Python】对函数求偏导数,利用 Sympy 库文件

本文介绍如何使用Python库SymPy进行偏导数的计算。SymPy是一个强大的符号计算库,支持多种数学功能,包括微积分。文章通过示例展示了如何定义变量,求解偏导数,并替换变量求具体值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求偏导数partial derivative

利用 Sympy

SymPy是一个符号计算的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。它完全由Python写成,不依赖于外部库。

SymPy支持符号计算、高精度计算、模式匹配、绘图、解方程、微积分、组合数学、离散数学、几何学、概率与统计、物理学等方面的功能。

程序代码

>>> from sympy import symbols, diff
>>> x, y = symbols('x y', real=True)
>>> diff( x**2 + y**3, y)
3*y**2
>>> diff( x**2 + y**3, y).subs({x:3, y:1})
3

先将所求变量(x,y)符号化。否则会提示为定义错误:NameError: name 'y' is not defined。之后利用diff函数求对应函数偏导数。
求出偏导数之后,若想求具体的值,可利用subs属性进行变量的替换,便可自动求出对应值。

参考链接:
https://docs.sympy.org/latest/index.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值