第4章-一阶多智体系统一致性 -> 离散时间系统一致性【程序代码】

本章节详细探讨了在离散时间系统中,一阶多智体系统的状态一致性问题。通过程序代码的形式,展示了如何在大数据背景下实现这种一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第4章-一阶多智体系统一致性 -> 离散时间系统一致性 回到目录 第4章-一阶多智体系统一致性 -> 切换拓扑系统一致性

文章目录

% 多智能体系统一致性的控制基础及其应用
% 第4章-一阶多智体系统一致性 -> 离散时间系统一致性
% Author: Zhao-Jichao
% Date: 2023-06-06
clear
clc

%% Laplacian Matrix
L = [1  0  0 -1
    -1  1  0  0
    -1 -1  2  0
     0  0 -1  1];

%% Initial States
x_1(:,1) = 20; 
x_2(:,1) = 10; 
x_3(:,1) = 40; 
x_4(:,1) = 00; 

%% Time parameters
tBegin = 0;
tFinal = 20;
epsilon = 0.45
分布时滞是指在智体系统中,由于通信传输的延迟或者计算时间等因素导致不同智体之间的信息传递存在定的时间差。这种时滞在智体系统的控制中是非常常见的,因为它会影响系统的稳定性和性能。 在Matlab中,可以使用些工具箱或者自己编写程序来模拟含时滞的智体一致性分析。以下是个简单的例子,其中有两个智体,它们之间的通信存在时滞。 ```matlab % 定义系统参数 n = 2; % 智体数目 A = [1 1; 1 -1]; % 系统矩阵 B = [0.5 0; 0 0.5]; % 输入矩阵 C = [1 0; 0 1]; % 输出矩阵 D = zeros(n); % 直通矩阵 tau = 0.5; % 时滞 % 定义控制器参数 K = [1 0; 0 1]; % 控制器增益矩阵 L = [0.5 0; 0 0.5]; % 时滞补偿矩阵 % 定义状态空间模型 sys = ss(A-B*K-L*C,B,C,D); % 定义时滞状态空间模型 sys_tau = pade(sys,tau); % 定义初始状态 x0 = [1; 1]; % 模拟系统响应 tspan = 0:0.1:10; [u, t] = gensig('square', 10, tspan(end), 0.1); [y, t, x] = lsim(sys_tau,u,t,x0); % 画出系统响应曲线 subplot(2,1,1); plot(t, y(:,1), 'r', t, y(:,2), 'b'); legend('智体1', '智体2'); xlabel('时间'); ylabel('输出'); title('含时滞智体一致性分析'); subplot(2,1,2); plot(t, x(:,1), 'r', t, x(:,2), 'b'); legend('智体1', '智体2'); xlabel('时间'); ylabel('状态'); title('含时滞智体一致性分析'); ``` 代码中包含了些基本的矩阵运算和Matlab内置函数,主要实现了以下几个步骤: 1. 定义系统矩阵A、输入矩阵B、输出矩阵C和直通矩阵D,以及时滞参数tau; 2. 定义控制器增益矩阵K和时滞补偿矩阵L; 3. 根据系统参数和控制器参数定义状态空间模型,使用pade函数将其转换为时滞状态空间模型; 4. 定义初始状态x0,并使用lsim函数模拟系统响应; 5. 画出系统响应曲线。 需要注意的是,本例只是个简单的示例,实际的智体一致性分析可能会更加复杂。同时,时滞的大小和分布方式也会对系统的稳定性和性能产生影响。因此,在实际应用中,需要根据具体情况进行调整和优化。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值