python计算相似矩阵

这篇博客讲述了在模糊数学课程后,作者对使用Python的sklearn库计算矩阵相似度的体会。强调了在处理矩阵时应避免使用DataFrame,推荐使用numpy。预处理阶段提到了MinMaxScaler和StandardScaler,而计算相似度矩阵时,介绍了sklearn.metrics.pairwise.cosine_similarity和pairwise_distances两种方法,后者是前者减1取绝对值得到的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模糊数学课上完之后对使用python中的sklearn计算矩阵各个元素的相似度有了一些感悟。

首先需要强调的是python中对于矩阵的计算尽量不要在DataFrame中,效率非常低。应该使用numpy。


1 预处理
  • 常用1:MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.metrics.pairwise import cosine_similarity

>>> matrix= np.array([[ 1., -1.,  2.],
...                   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值