信息抽取的介绍

本文概述了信息抽取中的核心概念,重点介绍了命名实体识别(NER)技术,包括规则应用、投票模型和分类模型(如HMM、CRF和LSTM-CRF)的使用。讲解了如何从非结构化文本中提取实体和关系,并探讨了NER的评估方法,如精确率、召回率和F1-score。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

信息抽取(information extraction),即从自然语言文本中,抽取出特定的事件或事实信息,帮助我们将海量内容自动分类、提取和重构。这些信息通常包括实体(entity)、关系(relation)、事件(event)。例如从新闻中抽取时间、地点、关键人物,或者从技术文档中抽取产品名称、开发时间、性能指标等。

一、信息抽取的相关概念介绍

非结构化数据:诸如图片、文本、video、音频等数据,需要加以处理才能被模型训练。
抽取实体: 人、地名、时间,比如医疗领域:蛋白质、疾病、药物等等。
抽取关系:位于、工作在、部分等。
指代消解:判断一个代词具体是指向哪个实体。

命名实体识别(NER):识别文本中具有特定意义的实体。NER任务中的常用模型包括生成式模型HMM、判别式模型CRF等,但是之后出现的BILSTM-CRF效果要远好于之前的常用模型,并且成为目前基于深度学习的NER方法中的最主流模型。
NER评估方法:精确率/召回率,F1-score。

二、命名实体识别(NER)所使用的方法

2-1、利用规则

1、利用一个制定好的规则
2、利用已经定义好的词典

2-2、投票模型

即统计每个单词的实体类型,记录针对于每个单词,概率最大的实体类型。

2-3、利用分类模型

非时序模型:逻辑回归、SVM
时序模型:HMM,CRF,LSTM-CRF

参考文章:
信息抽取——关系抽取.


总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ㄣ知冷煖★

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值