在交流电路中,电容和电感的阻抗(Impedance)可以通过分析它们对正弦交流信号的响应来推导。阻抗是电阻和电抗(容抗或感抗)的复数组合,用于描述电路元件对交流信号的阻碍作用。以下是详细的推导过程:
1. 电容的交流阻抗推导
(1) 电容的基本关系
电容的电压 vC(t)v_C(t)vC(t) 和电流 iC(t)i_C(t)iC(t) 的关系由电荷 q(t)q(t)q(t) 决定:
q(t)=CvC(t)
q(t) = C v_C(t)
q(t)=CvC(t)
电流是电荷的变化率:
iC(t)=dq(t)dt=CdvC(t)dt
i_C(t) = \frac{dq(t)}{dt} = C \frac{dv_C(t)}{dt}
iC(t)=dtdq(t)=CdtdvC(t)
(2) 假设正弦交流信号
设电容两端的电压为正弦信号:
vC(t)=Vmcos(ωt)
v_C(t) = V_m \cos(\omega t)
vC(t)=Vmcos(ωt)
其中:
- VmV_mVm 是电压幅值,
- ω=2πf\omega = 2\pi fω=2πf 是角频率(fff 为频率)。
(3) 计算电流
对电压求导:
iC(t)=Cddt[Vmcos(ωt)]=−CVmωsin(ωt)
i_C(t) = C \frac{d}{dt} \left[ V_m \cos(\omega t) \right] = -C V_m \omega \sin(\omega t)
iC(t)=Cdtd[Vmcos(ωt)]=−CVmωsin(ωt)
利用三角恒等式 sin(ωt)=cos(ωt+π2)\sin(\omega t) = \cos\left(\omega t + \frac{\pi}{2}\right)sin(ωt)=cos(ωt+2π),可以写成:
iC(t)=ωCVmcos(ωt+π2)
i_C(t) = \omega C V_m \cos\left(\omega t + \frac{\pi}{2}\right)
iC(t)=ωCVmcos(ωt+2π)
这表明:
- 电流幅值 Im=ωCVmI_m = \omega C V_mIm=ωCVm,
- 电流相位超前电压 π2\frac{\pi}{2}2π(90°)。
(4) 阻抗的定义
阻抗 ZCZ_CZC 定义为电压相量与电流相量的比值:
ZC=V˙CI˙C
Z_C = \frac{\dot{V}_C}{\dot{I}_C}
ZC=I˙CV˙C
其中:
- 电压相量 V˙C=Vm∠0∘\dot{V}_C = V_m \angle 0^\circV˙C=Vm∠0∘(假设初相位为0),
- 电流相量 I˙C=Im∠π2=ωCVm∠π2\dot{I}_C = I_m \angle \frac{\pi}{2} = \omega C V_m \angle \frac{\pi}{2}I˙C=Im∠2π=ωCVm∠2π。
因此:
ZC=Vm∠0∘ωCVm∠π2=1ωC∠−π2
Z_C = \frac{V_m \angle 0^\circ}{\omega C V_m \angle \frac{\pi}{2}} = \frac{1}{\omega C} \angle -\frac{\pi}{2}
ZC=ωCVm∠2πVm∠0∘=ωC1∠−2π
用复数表示:
ZC=1ωCe−jπ2=−j1ωC=1jωC
Z_C =\frac{1}{\omega C}e^{-j\frac{\pi}{2}} = -j \frac{1}{\omega C} =\frac{1}{j\omega C}
ZC=ωC1e−j2π=−jωC1=jωC1
其中 ( j ) 是虚数单位(j2=−1j^2 = -1j2=−1)。
(5) 容抗
容抗 XCX_CXC 是阻抗的虚部大小:
XC=1ωC
X_C = \frac{1}{\omega C}
XC=ωC1
单位是欧姆(Ω)。
2. 电感的交流阻抗推导
(1) 电感的基本关系
电感的电压 vL(t)v_L(t)vL(t) 和电流 iL(t)i_L(t)iL(t) 的关系由法拉第电磁感应定律决定:
vL(t)=LdiL(t)dt
v_L(t) = L \frac{di_L(t)}{dt}
vL(t)=LdtdiL(t)
其中 LLL 是电感值。
(2) 假设正弦交流信号
设电感电流为正弦信号:
iL(t)=Imcos(ωt)
i_L(t) = I_m \cos(\omega t)
iL(t)=Imcos(ωt)
(3) 计算电压
对电流求导:
vL(t)=Lddt[Imcos(ωt)]=−LImωsin(ωt)
v_L(t) = L \frac{d}{dt} \left[ I_m \cos(\omega t) \right] = -L I_m \omega \sin(\omega t)
vL(t)=Ldtd[Imcos(ωt)]=−LImωsin(ωt)
利用三角恒等式 sin(ωt)=cos(ωt+π2)\sin(\omega t) = \cos\left(\omega t + \frac{\pi}{2}\right)sin(ωt)=cos(ωt+2π),可以写成:
vL(t)=ωLImcos(ωt+π2)
v_L(t) = \omega L I_m \cos\left(\omega t + \frac{\pi}{2}\right)
vL(t)=ωLImcos(ωt+2π)
这表明:
- 电压幅值 Vm=ωLImV_m = \omega L I_mVm=ωLIm,
- 电压相位超前电流 π2\frac{\pi}{2}2π(90°)。
(4) 阻抗的定义
阻抗 ZLZ_LZL 定义为电压相量与电流相量的比值:
ZL=V˙LI˙L
Z_L = \frac{\dot{V}_L}{\dot{I}_L}
ZL=I˙LV˙L
其中:
- 电流相量 I˙L=Im∠0∘\dot{I}_L = I_m \angle 0^\circI˙L=Im∠0∘(假设初相位为0),
- 电压相量 V˙L=Vm∠π2=ωLIm∠π2\dot{V}_L = V_m \angle \frac{\pi}{2} = \omega L I_m \angle \frac{\pi}{2}V˙L=Vm∠2π=ωLIm∠2π。
因此:
ZL=ωLIm∠π2Im∠0∘=ωL∠π2
Z_L = \frac{\omega L I_m \angle \frac{\pi}{2}}{I_m \angle 0^\circ} = \omega L \angle \frac{\pi}{2}
ZL=Im∠0∘ωLIm∠2π=ωL∠2π
用复数表示:
ZL=ωLejπ2=jωL
Z_L =\omega Le^{j\frac{\pi}{2}} =j \omega L
ZL=ωLej2π=jωL
(5) 感抗
感抗 XLX_LXL 是阻抗的虚部大小:
XL=ωL
X_L = \omega L
XL=ωL
单位是欧姆(Ω)。
3. 总结
元件 | 阻抗表达式 | 阻抗性质 | 相位关系 |
---|---|---|---|
电容 | ZC=−j1ωCZ_C = -j \frac{1}{\omega C}ZC=−jωC1 | 容抗 XC=1ωCX_C = \frac{1}{\omega C}XC=ωC1 | 电流 超前 电压 90∘90^\circ90∘ |
电感 | ZL=jωLZ_L = j \omega LZL=jωL | 感抗 XL=ωLX_L = \omega LXL=ωL | 电压 超前 电流 90∘90^\circ90∘ |
关键结论
- 电容的阻抗是负虚数(−j1ωC-j \frac{1}{\omega C}−jωC1),表示电流超前电压 90∘90^\circ90∘。
- 电感的阻抗是正虚数(jωLj \omega LjωL),表示电压超前电流 90∘90^\circ90∘。
- 电阻的阻抗是实数 RRR,相位无偏移(电压和电流同相)。
这些阻抗关系是交流稳态电路分析(如阻抗匹配、滤波器设计)的基础。