最近OOM感悟

本文深入探讨了工作中遇到的各种OOM(Out Of Memory)问题及其解决方案。包括Kafka查询时因创建过多Consumer对象导致的OOM、业务中由于不当使用ThreadLocal及无界队列引发的内存泄露,以及文件传输过程中可能遇到的内存溢出问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近期工作上真的到处都在遇到OOM。

Kafka查询出现OOM

原因:一次查询创建了太多consumer对象。解决方案:Consumer对象存放到ThreadLocal中复用,并在请求结束后调用 consumer#unsubscribe consumer#close 方法关闭Consumer对象,释放内存。

业务上出现OOM

使用我们JAR包的十几个应用的内存都达到了惊人的6G。显然根据他们实际的业务评估,根本不可能出现如此严重的内存消耗。

经过我的排查,主要代码中出现了两处严重的内存泄露。

①存放在ThreadLocal中的消息没有手动调用ThreadLocal#remove方法释放内存。

②滥用内存队列,例如 LinkedBlockingQueue ,构造的时候不指定大小,就是一个无界队列。有的内存队列只存不消费,造成内存严重浪费。有的队列消费能力不足,导致队列严重积压。

文件传输OOM

待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小大宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值