Echart 大数据处理优化全攻略

需求

Echart 绘制的数据量很大应该如何处理

分析

当 ECharts 处理大量数据(如数万至数百万条记录)时,可能会遇到渲染性能下降、交互卡顿甚至浏览器崩溃等问题。以下是针对不同场景的优化策略和最佳实践:

一、数据分层与采样(核心优化)

对于数据量极大的场景,避免直接渲染全部数据,而是根据当前视图范围和精度需求,动态采样或聚合数据:

  1. 前端采样(适用于万级数据)
    通过计算视图可见范围,只渲染当前可见的数据点:
// 示例:根据视图范围过滤数据(简化版)
function sampleData(data, start, end) {
   
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博客zhu虎康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值