文章目录 需求 分析 一、数据分层与采样(核心优化) 二、使用 ECharts 内置优化特性 三、分页与懒加载(适用于表格类图表) 四、数据延迟加载与渐进渲染 五、硬件加速与渲染优化 六、工具与库推荐 七、性能监控与调优 八、场景化解决方案 需求 Echart 绘制的数据量很大应该如何处理 分析 当 ECharts 处理大量数据(如数万至数百万条记录)时,可能会遇到渲染性能下降、交互卡顿甚至浏览器崩溃等问题。以下是针对不同场景的优化策略和最佳实践: 一、数据分层与采样(核心优化) 对于数据量极大的场景,避免直接渲染全部数据,而是根据当前视图范围和精度需求,动态采样或聚合数据: 前端采样(适用于万级数据) 通过计算视图可见范围,只渲染当前可见的数据点: // 示例:根据视图范围过滤数据(简化版) function sampleData(data, start, end) {