机器学习(十) - - 模型评估和选择⑤偏差和方差

本文介绍了偏差-方差分解的概念及其在评估机器学习算法泛化能力中的应用。它揭示了泛化性能受到学习算法能力、数据充分性和学习任务难度的影响,并讨论了偏差-方差窘境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“偏差-方差分解”(bias-variancedecomposition)是解释学习算法泛化能力的重要工具。

//通过实验评估泛化能力之后,人们往往想知道“为啥”有这样的性能。

 

为了方便讨论,假定噪声期望为0,于是泛化误差可以分解为偏差方差和噪声之和:

 

具体公式推导见右:偏差-方差分解

 

偏差-方差分解说明,泛化性能是由学习算法的能力,数据的充分性以及学习任务本身的难度所共同决定的。

 

(要尽量让偏差和方差都小:偏差衡量拟合程度,方差衡量数据扰动)

-----------------------------------------------

偏差-方差窘境(bias-variancedilemma):一般来说,偏差和方差是冲突的

 

训练不足时,学习器你和能力不强,这时偏差成为影响泛化误差的主力;训练加深时,拟合能力很强了之后方差成为主导因素;训练程度足够后,如果数据有非全局性可能导致过拟合(这就无奈了)。(图应该挺形象)







祝大家学习愉快~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱铭德

五毛也是爱٩(●´৺`●)૭

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值