一般来说测试可以分成测试计划、测试用例、单元测试、功能测试、性能测试。
我们来看看AI给这些环节都带来了哪些改变。 先来看看一个传统方式的测试过程,
比如现在有一个系统需求大致是这样的:一个基于web的用户管理系统,功能包含用户管理(新建、修改、删除)、角色管理(新建、修改、删除)、权限管理(权限设置)。就是一个简化版本的用户管理系统。
传统方式
Step1:单元测试
程序写手动编写单元测试代码,通过Maven插件构建项目时自动触发单元测试。如果搭建了gitlab+jenkins的话就可以上传代码自动触发单元测试,并且测试完后发送测试报告到相应的邮箱。
Step2:测试用例
当程序代码提测后,到达测试这边,系统就由测试人员接手并着手测试。
先按自动化测试规定好的Excel格式里填写测试用例也就是测试用例模板,这里的格式主要是和自动化测试的脚本对应。
说实话测试用例得对系统有着全面的覆盖率,所以正面、反面,程序的各个分支、各种边界都得测试。因而测试用例会非常的多,所以缩写测试用例也是一个比较繁琐的事情。一个简单的系统往往就得有500~600个测试用例。最关键,最关键这些需要手动填写。
Step3:编写自动化测试脚本
这一步包含编写自动化测试脚本+测试数据生成
testcases.xlsx(测试用例)
test_user_system.py(通用测试脚本)
自动化测试脚本最好写成通用性的代码,这样就可以实现增加测试用例时不用再修改代码。
Step4:生成测试报告
最后就是生成相应的自动化测试报告
- 即时报告:使用pytest-html快速反馈
- 深度报告:用Allure做迭代分析
Step5:性能测试
一般性能测试就是使用Jmeter或LoadRunner进行录制脚本或者直接通过测试方式测试。
- Jmeter
- LoadRunner
AI方式
AI+自动化测试脚本
视频教程:
这才是b站最牛的AI大模型测试全套教程,涵盖ai大模型测试开发,大模型测试用例,ai模型测试。
当然之前有不小测试门槛的自动化测试脚本有了AI之后就直接找个AI就可以写了。当然还有大量的智能体就可以协助我们完成自动化测试脚本。
可以完全各种需求的脚本编写
对于测试人员来讲,大多数都是普通测试,如果增加了自动化测试的技能工资能涨不少。我们团队中的测试几年前也有和她聊过,让她学习自动化测试给她涨工资。当时就只能从零开始写python,还买了不少书最后不了了之。
现在有了AI只要在对话框里说一句“帮我生成自动化测试脚本”,AI就能基于页面元素和接口规范,一键输出可运行的脚本,大幅降低了编写门槛,但是,要想把脚本的稳定性、可维护性和大模型的商用思路结合起来,单靠“小白式”上手还不够。这时,就需要系统化地掌握AI应用的业务场景和原理——知乎知学堂的AI公开课,覆盖了大语言模型应用的典型业务场景、AI原理等。
感兴趣的话,可以了解一下目前还在活动期,不知道啥时候结束,建议先报名占坑:↓↓↓
测试岗高薪必学🔥AI技术原理 + 实战应用 + 职业发展
0元领取
完课后还有不少干货资料免费领取,加薪正向你招手。
当然除了这些独立的编码功能外,像接口方面我们使用的postman要已经增加了AI协助测试的功能
可以直接生成测试的脚本代码。
AI+测试用例
数量庞大而繁琐的测试用例可以直接使用AI来写了,比如GPT这里的GPTs
豆包智能体
都有大量的AI智能体, 可以帮助我们写测试用例
生成后的测试用例
还可以让AI提供下载地址,如果感觉数量不够还可以让AI增加,或者给AI提测试用例的覆盖率要增加到100%之类的需求。
AI+自动化测试脚本
当然之前有不小测试门槛的自动化测试脚本有了AI之后就直接找个AI就可以写了。当然还有大量的智能体就可以协助我们完成自动化测试脚本。
可以完全各种需求的脚本编写
当然除了这些独立的编码功能外,像接口方面我们使用的postman要已经增加了AI协助测试的功能
可以直接生成测试的脚本代码。
对于测试人员来讲,大多数都是普通测试,如果增加了自动化测试的技能工资能涨不少。我们团队中的测试几年前也有和她聊过,让她学习自动化测试给她涨工资。当时就只能从零开始写python,还买了不少书最后不了了之。
现在有了AI只要在对话框里说一句“帮我生成自动化测试脚本”,AI就能基于页面元素和接口规范,一键输出可运行的脚本,大幅降低了编写门槛,但是,要想把脚本的稳定性、可维护性和大模型的商用思路结合起来,单靠“小白式”上手还不够。这时,就需要系统化地掌握AI知识和应用——知乎知学堂的AI公开课,覆盖了大语言模型场景梳理、AI产品使用技能、大量的AI实战案例及使用技巧等。
感兴趣的话,可以了解一下目前还在活动期,不知道啥时候结束,建议先报名占坑:↓↓↓
++++++++++卡位++++++++++
完课后还有不少干货资料免费领取,加薪正向你招手。
AI+生成测试数据
比如直接让AI生成测试数据,以前我们人工生成的测试数据,不但耗时繁琐而且生成的数据非常的不规范。效果不好还测试不出问题来。现在只要所自己的需求和测试数据的格式或示例给AI就能生成大量的测试数据。
分分钟生成大量规范的测试数据,对开发人员还是测试人员来讲绝对是极大的福利。
AI+自愈测试
自愈测试听起来好像很牛的样子,据说在2014年左右就已经有这个名词了。据说在2020年有人发表了关于Selenium测试自动化框架中实现自愈功能的研究。到AI火爆起来后就出来更多的自愈测试工具或平台。
总的来说自愈测试就是给软件测试工具装了智能大脑和自动修复模块,让它能自己解决测试中遇到的问题,不用时时需要人工介入修改和调整。
如果某个系统UI中的微小更改,例如将input名称从“username”重命名为“user_name”,将导致测试失败,需要手动更新测试脚本。这时自动化测试的脚本或数据就需要人工的调整,现在可以进入自我修复测试自动化,利用AI检测应用的变化自动更新和修改脚本。
自愈测试的工作原理、
AI+智能体创作平台
除了使用gpt或豆包之外,还有像coze、Dify、腾讯元器、阿里云百炼等等AI智能体创作平台。用户可以在上面使用别人创建好的自动化测试智能体,也可以创建属于自己的AI自动化测试智能体。
我们先来看看,coze上的一些自动化测试智能体
比如这个Pagepass自动化测试,进行入会有相应的指引
选择相应的指引,
一步步按照指引就可以完成自动化测试。当然这些AI智能体创建平台有个最大的好处就是用户可以根据模板或完全自己自定义设计自己的智能体,里面有流程的设计、调用接口、调用插件等等配置,最终生成属于自己的专属自动化测试的智能体。
AI+智能软件研发管理平台
Tapd是腾讯出品的一款协作与软件研发管理平台,最近也赋予AI的能力了。
如在测试这块增加了生成测试用例的功能,号称可以提升测试效率300%。
tapd基于需求分析的用户故事,通过AI测试分析和用例生成,再到AI测试评审、测试执行、测试报告形成一个闭环。AI模型方面,接入了deepseek+混元大模型。
我的团队是2018年开始使用,当时免费的力度非常的大,另外又是微信和王者荣耀在使用的管理管理平台特别适合敏捷开发模式的团队使用。当时我们主要是产品和前后台开发在使用,而测试还是使用excel表格在管理没有形成完整的闭环,有了这个能力就能让整个团队更快的接入完整的闭合流程中来。